Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationMon, 03 Oct 2011 12:11:34 -0400
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Oct/03/t1317658319hkw6hvi1e6kntb2.htm/, Retrieved Thu, 18 Jul 2024 03:04:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=125243, Retrieved Thu, 18 Jul 2024 03:04:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact142
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Histogram] [Workshop 1, task 1] [2011-10-03 16:11:34] [79818163420d1233b8d9d93d595e6c9e] [Current]
- RMPD    [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Taak 1 WS 6] [2011-11-11 16:49:06] [86f7284edee3dbb8ea5c7e2dec87d892]
- RMPD    [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [Taak 1 WS 6] [2011-11-11 16:55:17] [86f7284edee3dbb8ea5c7e2dec87d892]
- RMPD    [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [] [2011-11-11 17:11:18] [86f7284edee3dbb8ea5c7e2dec87d892]
- RMPD    [Chi-Squared Test, McNemar Test, and Fisher Exact Test] [] [2011-11-11 17:13:43] [86f7284edee3dbb8ea5c7e2dec87d892]
Feedback Forum

Post a new message
Dataseries X:
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'Linuxi686'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'IntelMacOSX10_6_2'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.1'
'WindowsNT6.0'
'IntelMacOSX10_6_2'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'IntelMacOSX10_5_8'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'IntelMacOSX10_5_8'
'IntelMacOSX10_5_8'
'WindowsNT6.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.0'
'IntelMacOSX10_6_2'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'IntelMacOSX10_5_7'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT5.1'
'IntelMacOSX10_6_1'
'WindowsNT6.0'
'WindowsNT5.1'
'IntelMacOSX10.5'
'WindowsNT6.0'
'IntelMacOSX10_6'
'IntelMacOSX10_5_8'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.1'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT6.0'
'WindowsNT6.1'
'WindowsNT6.1'
'WindowsNT6.1'
'WindowsNT5.1'
'WindowsNT6.0'
'WindowsNT5.1'
'IntelMacOSX10_6_2'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT5.1'
'WindowsNT5.1'




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=125243&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=125243&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=125243&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







Frequency Table (Categorical Data)
CategoryAbs. FrequencyRel. Frequency
IntelMacOSX10.510.0072
IntelMacOSX10_5_710.0072
IntelMacOSX10_5_840.0288
IntelMacOSX10_610.0072
IntelMacOSX10_6_110.0072
IntelMacOSX10_6_240.0288
Linuxi68610.0072
WindowsNT5.1520.3741
WindowsNT6.0650.4676
WindowsNT6.190.0647

\begin{tabular}{lllllllll}
\hline
Frequency Table (Categorical Data) \tabularnewline
Category & Abs. Frequency & Rel. Frequency \tabularnewline
IntelMacOSX10.5 & 1 & 0.0072 \tabularnewline
IntelMacOSX10_5_7 & 1 & 0.0072 \tabularnewline
IntelMacOSX10_5_8 & 4 & 0.0288 \tabularnewline
IntelMacOSX10_6 & 1 & 0.0072 \tabularnewline
IntelMacOSX10_6_1 & 1 & 0.0072 \tabularnewline
IntelMacOSX10_6_2 & 4 & 0.0288 \tabularnewline
Linuxi686 & 1 & 0.0072 \tabularnewline
WindowsNT5.1 & 52 & 0.3741 \tabularnewline
WindowsNT6.0 & 65 & 0.4676 \tabularnewline
WindowsNT6.1 & 9 & 0.0647 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=125243&T=1

[TABLE]
[ROW][C]Frequency Table (Categorical Data)[/C][/ROW]
[ROW][C]Category[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][/ROW]
[ROW][C]IntelMacOSX10.5[/C][C]1[/C][C]0.0072[/C][/ROW]
[ROW][C]IntelMacOSX10_5_7[/C][C]1[/C][C]0.0072[/C][/ROW]
[ROW][C]IntelMacOSX10_5_8[/C][C]4[/C][C]0.0288[/C][/ROW]
[ROW][C]IntelMacOSX10_6[/C][C]1[/C][C]0.0072[/C][/ROW]
[ROW][C]IntelMacOSX10_6_1[/C][C]1[/C][C]0.0072[/C][/ROW]
[ROW][C]IntelMacOSX10_6_2[/C][C]4[/C][C]0.0288[/C][/ROW]
[ROW][C]Linuxi686[/C][C]1[/C][C]0.0072[/C][/ROW]
[ROW][C]WindowsNT5.1[/C][C]52[/C][C]0.3741[/C][/ROW]
[ROW][C]WindowsNT6.0[/C][C]65[/C][C]0.4676[/C][/ROW]
[ROW][C]WindowsNT6.1[/C][C]9[/C][C]0.0647[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=125243&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=125243&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Categorical Data)
CategoryAbs. FrequencyRel. Frequency
IntelMacOSX10.510.0072
IntelMacOSX10_5_710.0072
IntelMacOSX10_5_840.0288
IntelMacOSX10_610.0072
IntelMacOSX10_6_110.0072
IntelMacOSX10_6_240.0288
Linuxi68610.0072
WindowsNT5.1520.3741
WindowsNT6.0650.4676
WindowsNT6.190.0647



Parameters (Session):
par2 = grey ; par3 = FALSE ; par4 = Unknown ;
Parameters (R input):
par1 = ; par2 = grey ; par3 = FALSE ; par4 = Unknown ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
plot(mytab <- table(x),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('histogram.htm','Frequency Table (Histogram)',''),6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}