Multiple Linear Regression - Estimated Regression Equation |
#Miles[t] = + 7747.17412280702 + 54.4034115572436t + e[t] |
Multiple Linear Regression - Ordinary Least Squares | |||||
Variable | Parameter | S.D. | T-STAT H0: parameter = 0 | 2-tail p-value | 1-tail p-value |
(Intercept) | 7747.17412280702 | 330.541831 | 23.4378 | 0 | 0 |
t | 54.4034115572436 | 5.91749 | 9.1937 | 0 | 0 |
Multiple Linear Regression - Regression Statistics | |
Multiple R | 0.6880832236771 |
R-squared | 0.47345852270587 |
Adjusted R-squared | 0.467857017628273 |
F-TEST (value) | 84.5234479210663 |
F-TEST (DF numerator) | 1 |
F-TEST (DF denominator) | 94 |
p-value | 9.54791801177635e-15 |
Multiple Linear Regression - Residual Statistics | |
Residual Standard Deviation | 1606.68298860349 |
Sum Squared Residuals | 242654441.231577 |
Multiple Linear Regression - Actuals, Interpolation, and Residuals | |||
Time or Index | Actuals | Interpolation Forecast | Residuals Prediction Error |
1 | 6827 | 7801.57753436426 | -974.577534364261 |
2 | 6178 | 7855.9809459215 | -1677.9809459215 |
3 | 7084 | 7910.38435747875 | -826.384357478748 |
4 | 8162 | 7964.78776903599 | 197.212230964008 |
5 | 8462 | 8019.19118059324 | 442.808819406764 |
6 | 9644 | 8073.59459215048 | 1570.40540784952 |
7 | 10466 | 8127.99800370772 | 2338.00199629228 |
8 | 10748 | 8182.40141526497 | 2565.59858473503 |
9 | 9963 | 8236.80482682221 | 1726.19517317779 |
10 | 8194 | 8291.20823837945 | -97.2082383794536 |
11 | 6848 | 8345.6116499367 | -1497.6116499367 |
12 | 7027 | 8400.01506149394 | -1373.01506149394 |
13 | 7269 | 8454.41847305118 | -1185.41847305118 |
14 | 6775 | 8508.82188460843 | -1733.82188460843 |
15 | 7819 | 8563.22529616567 | -744.225296165672 |
16 | 8371 | 8617.62870772292 | -246.628707722916 |
17 | 9069 | 8672.03211928016 | 396.967880719841 |
18 | 10248 | 8726.4355308374 | 1521.5644691626 |
19 | 11030 | 8780.83894239465 | 2249.16105760535 |
20 | 10882 | 8835.24235395189 | 2046.75764604811 |
21 | 10333 | 8889.64576550913 | 1443.35423449087 |
22 | 9109 | 8944.04917706638 | 164.950822933623 |
23 | 7685 | 8998.45258862362 | -1313.45258862362 |
24 | 7602 | 9052.85600018086 | -1450.85600018086 |
25 | 8350 | 9107.25941173811 | -757.259411738108 |
26 | 7829 | 9161.66282329535 | -1332.66282329535 |
27 | 8829 | 9216.06623485259 | -387.066234852595 |
28 | 9948 | 9270.46964640984 | 677.530353590161 |
29 | 10638 | 9324.87305796708 | 1313.12694203292 |
30 | 11253 | 9379.27646952433 | 1873.72353047567 |
31 | 11424 | 9433.67988108157 | 1990.32011891843 |
32 | 11391 | 9488.08329263881 | 1902.91670736119 |
33 | 10665 | 9542.48670419606 | 1122.51329580394 |
34 | 9396 | 9596.8901157533 | -200.890115753301 |
35 | 7775 | 9651.29352731054 | -1876.29352731054 |
36 | 7933 | 9705.69693886779 | -1772.69693886779 |
37 | 8186 | 9760.10035042503 | -1574.10035042503 |
38 | 7444 | 9814.50376198228 | -2370.50376198228 |
39 | 8484 | 9868.90717353952 | -1384.90717353952 |
40 | 9864 | 9923.31058509676 | -59.3105850967625 |
41 | 10252 | 9977.71399665401 | 274.286003345994 |
42 | 12282 | 10032.1174082113 | 2249.88259178875 |
43 | 11637 | 10086.5208197685 | 1550.47918023151 |
44 | 11577 | 10140.9242313257 | 1436.07576867426 |
45 | 12417 | 10195.327642883 | 2221.67235711702 |
46 | 9637 | 10249.7310544402 | -612.731054440224 |
47 | 8094 | 10304.1344659975 | -2210.13446599747 |
48 | 9280 | 10358.5378775547 | -1078.53787755471 |
49 | 8334 | 10412.941289112 | -2078.94128911196 |
50 | 7899 | 10467.3447006692 | -2568.3447006692 |
51 | 9994 | 10521.7481122264 | -527.748112226442 |
52 | 10078 | 10576.1515237837 | -498.151523783686 |
53 | 10801 | 10630.5549353409 | 170.44506465907 |
54 | 12950 | 10684.9583468982 | 2265.04165310183 |
55 | 12222 | 10739.3617584554 | 1482.63824154458 |
56 | 12246 | 10793.7651700127 | 1452.23482998734 |
57 | 13281 | 10848.1685815699 | 2432.8314184301 |
58 | 10366 | 10902.5719931271 | -536.571993127148 |
59 | 8730 | 10956.9754046844 | -2226.97540468439 |
60 | 9614 | 11011.3788162416 | -1397.37881624163 |
61 | 8639 | 11065.7822277989 | -2426.78222779888 |
62 | 8772 | 11120.1856393561 | -2348.18563935612 |
63 | 10894 | 11174.5890509134 | -280.589050913366 |
64 | 10455 | 11228.9924624706 | -773.99246247061 |
65 | 11179 | 11283.3958740279 | -104.395874027853 |
66 | 10588 | 11337.7992855851 | -749.799285585097 |
67 | 10794 | 11392.2026971423 | -598.20269714234 |
68 | 12770 | 11446.6061086996 | 1323.39389130042 |
69 | 13812 | 11501.0095202568 | 2310.99047974317 |
70 | 10857 | 11555.4129318141 | -698.412931814071 |
71 | 9290 | 11609.8163433713 | -2319.81634337131 |
72 | 10925 | 11664.2197549286 | -739.219754928558 |
73 | 9491 | 11718.6231664858 | -2227.6231664858 |
74 | 8919 | 11773.026578043 | -2854.02657804305 |
75 | 11607 | 11827.4299896003 | -220.429989600289 |
76 | 8852 | 11881.8334011575 | -3029.83340115753 |
77 | 12537 | 11936.2368127148 | 600.763187285223 |
78 | 14759 | 11990.640224272 | 2768.35977572798 |
79 | 13667 | 12045.0436358293 | 1621.95636417074 |
80 | 13731 | 12099.4470473865 | 1631.55295261349 |
81 | 15110 | 12153.8504589438 | 2956.14954105625 |
82 | 12185 | 12208.253870501 | -23.253870500995 |
83 | 10645 | 12262.6572820582 | -1617.65728205824 |
84 | 12161 | 12317.0606936155 | -156.060693615482 |
85 | 10840 | 12371.4641051727 | -1531.46410517273 |
86 | 10436 | 12425.86751673 | -1989.86751672997 |
87 | 13589 | 12480.2709282872 | 1108.72907171279 |
88 | 13402 | 12534.6743398445 | 867.325660155543 |
89 | 13103 | 12589.0777514017 | 513.9222485983 |
90 | 14933 | 12643.4811629589 | 2289.51883704106 |
91 | 14147 | 12697.8845745162 | 1449.11542548381 |
92 | 14057 | 12752.2879860734 | 1304.71201392657 |
93 | 16234 | 12806.6913976307 | 3427.30860236933 |
94 | 12389 | 12861.0948091879 | -472.094809187919 |
95 | 11595 | 12915.4982207452 | -1320.49822074516 |
96 | 12772 | 12969.9016323024 | -197.901632302406 |
Goldfeld-Quandt test for Heteroskedasticity | |||
p-values | Alternative Hypothesis | ||
breakpoint index | greater | 2-sided | less |
5 | 0.043926742623791 | 0.0878534852475819 | 0.956073257376209 |
6 | 0.0188698199364317 | 0.0377396398728634 | 0.981130180063568 |
7 | 0.00726539048489739 | 0.0145307809697948 | 0.992734609515103 |
8 | 0.00214332466506287 | 0.00428664933012573 | 0.997856675334937 |
9 | 0.00656407383728544 | 0.0131281476745709 | 0.993435926162715 |
10 | 0.126676651212481 | 0.253353302424963 | 0.873323348787519 |
11 | 0.432658608066338 | 0.865317216132676 | 0.567341391933662 |
12 | 0.516758450710488 | 0.966483098579024 | 0.483241549289512 |
13 | 0.498472142428048 | 0.996944284856097 | 0.501527857571952 |
14 | 0.49467173883747 | 0.989343477674939 | 0.50532826116253 |
15 | 0.411481923477049 | 0.822963846954098 | 0.588518076522951 |
16 | 0.331935248994143 | 0.663870497988286 | 0.668064751005857 |
17 | 0.276263899157198 | 0.552527798314395 | 0.723736100842802 |
18 | 0.285473298166612 | 0.570946596333225 | 0.714526701833388 |
19 | 0.334896057917292 | 0.669792115834583 | 0.665103942082709 |
20 | 0.334394435952379 | 0.668788871904757 | 0.665605564047622 |
21 | 0.288071886270787 | 0.576143772541575 | 0.711928113729213 |
22 | 0.240266479393191 | 0.480532958786382 | 0.759733520606809 |
23 | 0.26855915357753 | 0.537118307155059 | 0.73144084642247 |
24 | 0.283219940796793 | 0.566439881593586 | 0.716780059203207 |
25 | 0.243460828783648 | 0.486921657567295 | 0.756539171216352 |
26 | 0.226787673239283 | 0.453575346478566 | 0.773212326760717 |
27 | 0.179394040840351 | 0.358788081680702 | 0.820605959159649 |
28 | 0.147779202009686 | 0.295558404019373 | 0.852220797990314 |
29 | 0.137354012697483 | 0.274708025394966 | 0.862645987302517 |
30 | 0.1483713774838 | 0.2967427549676 | 0.8516286225162 |
31 | 0.160660966328193 | 0.321321932656386 | 0.839339033671807 |
32 | 0.165579801187604 | 0.331159602375208 | 0.834420198812396 |
33 | 0.142451149907204 | 0.284902299814409 | 0.857548850092796 |
34 | 0.119943761550762 | 0.239887523101524 | 0.880056238449238 |
35 | 0.156093899729964 | 0.312187799459927 | 0.843906100270036 |
36 | 0.174385074579698 | 0.348770149159396 | 0.825614925420302 |
37 | 0.172821517115761 | 0.345643034231522 | 0.827178482884239 |
38 | 0.211057368346473 | 0.422114736692946 | 0.788942631653527 |
39 | 0.188885267633867 | 0.377770535267733 | 0.811114732366133 |
40 | 0.151143509354633 | 0.302287018709267 | 0.848856490645367 |
41 | 0.12202103445838 | 0.24404206891676 | 0.87797896554162 |
42 | 0.172192766261948 | 0.344385532523896 | 0.827807233738052 |
43 | 0.180595415859277 | 0.361190831718553 | 0.819404584140723 |
44 | 0.183720167973407 | 0.367440335946814 | 0.816279832026593 |
45 | 0.244545580500471 | 0.489091161000941 | 0.755454419499529 |
46 | 0.209975642337825 | 0.419951284675649 | 0.790024357662175 |
47 | 0.237707430711422 | 0.475414861422844 | 0.762292569288578 |
48 | 0.206481667157446 | 0.412963334314893 | 0.793518332842553 |
49 | 0.214739341287004 | 0.429478682574009 | 0.785260658712996 |
50 | 0.253063130579655 | 0.506126261159309 | 0.746936869420345 |
51 | 0.20821084828965 | 0.4164216965793 | 0.79178915171035 |
52 | 0.168305613352613 | 0.336611226705226 | 0.831694386647387 |
53 | 0.137353067150547 | 0.274706134301094 | 0.862646932849453 |
54 | 0.201066290565621 | 0.402132581131243 | 0.798933709434379 |
55 | 0.220031395753454 | 0.440062791506908 | 0.779968604246546 |
56 | 0.244367717197299 | 0.488735434394598 | 0.755632282802701 |
57 | 0.39258294787539 | 0.78516589575078 | 0.60741705212461 |
58 | 0.348069551638915 | 0.69613910327783 | 0.651930448361085 |
59 | 0.352173846793654 | 0.704347693587309 | 0.647826153206346 |
60 | 0.312976430103921 | 0.625952860207842 | 0.687023569896079 |
61 | 0.32691858564132 | 0.653837171282641 | 0.67308141435868 |
62 | 0.337675372819643 | 0.675350745639286 | 0.662324627180357 |
63 | 0.284424957833506 | 0.568849915667012 | 0.715575042166494 |
64 | 0.234911782937247 | 0.469823565874494 | 0.765088217062753 |
65 | 0.192263313091167 | 0.384526626182335 | 0.807736686908833 |
66 | 0.152742211121819 | 0.305484422243637 | 0.847257788878181 |
67 | 0.118305509574019 | 0.236611019148039 | 0.881694490425981 |
68 | 0.126155960321835 | 0.252311920643669 | 0.873844039678165 |
69 | 0.222503771488155 | 0.445007542976309 | 0.777496228511846 |
70 | 0.178601850703832 | 0.357203701407664 | 0.821398149296168 |
71 | 0.177427448118138 | 0.354854896236276 | 0.822572551881862 |
72 | 0.137299264964063 | 0.274598529928126 | 0.862700735035937 |
73 | 0.141342132226965 | 0.282684264453929 | 0.858657867773035 |
74 | 0.214484455336785 | 0.428968910673571 | 0.785515544663215 |
75 | 0.170497204055269 | 0.340994408110537 | 0.829502795944731 |
76 | 0.38155380274963 | 0.763107605499261 | 0.61844619725037 |
77 | 0.328040744933511 | 0.656081489867021 | 0.671959255066489 |
78 | 0.395091421291152 | 0.790182842582305 | 0.604908578708848 |
79 | 0.36789684835855 | 0.7357936967171 | 0.63210315164145 |
80 | 0.352117138964509 | 0.704234277929018 | 0.647882861035491 |
81 | 0.586832143678101 | 0.826335712643799 | 0.413167856321899 |
82 | 0.508968324532214 | 0.982063350935571 | 0.491031675467786 |
83 | 0.471277685514511 | 0.942555371029022 | 0.528722314485489 |
84 | 0.378718281528865 | 0.75743656305773 | 0.621281718471135 |
85 | 0.390200779836658 | 0.780401559673316 | 0.609799220163342 |
86 | 0.679282614716026 | 0.641434770567948 | 0.320717385283974 |
87 | 0.599489369668389 | 0.801021260663223 | 0.400510630331611 |
88 | 0.543404848134763 | 0.913190303730474 | 0.456595151865237 |
89 | 0.61125808672073 | 0.77748382655854 | 0.38874191327927 |
90 | 0.483127245637102 | 0.966254491274204 | 0.516872754362898 |
91 | 0.379648283154382 | 0.759296566308763 | 0.620351716845619 |
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity | |||
Description | # significant tests | % significant tests | OK/NOK |
1% type I error level | 1 | 0.0114942528735632 | NOK |
5% type I error level | 4 | 0.0459770114942529 | OK |
10% type I error level | 5 | 0.0574712643678161 | OK |