Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationTue, 08 Nov 2011 18:25:00 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Nov/08/t1320794727ow3xspbmq0ys62c.htm/, Retrieved Fri, 26 Apr 2024 04:20:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=141031, Retrieved Fri, 26 Apr 2024 04:20:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [] [2011-11-08 23:25:00] [bf01443cf1030c799dd52261abeceb77] [Current]
Feedback Forum

Post a new message
Dataseries X:
0	0	1
1	0	1
1	0	1,5
0	0	0
1	1	0
-1	1	1
-0,5	2	1
0	1	1
2	1	2
0	1	1
0	2	2
1	2	0
0,5	2	0
2	1	2
1	NA	NA
2	2	1
NA	NA	1
0	1	-0,5
0	2	2
0,5	NA	0
NA	-1	1
2	1	-1
NA	NA	NA
0	2	NA
1	1	1
0	1	-1
-1	1	NA
2	1	NA
1	NA	2
2	0	0
0	-1	-0,5
0	2	1
1	0	0,5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gertrude Mary Cox' @ cox.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=141031&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gertrude Mary Cox' @ cox.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=141031&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=141031&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gertrude Mary Cox' @ cox.wessa.net







ANOVA Model
E ~ S
means00.8330.6670.3750.833

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
E  ~  S \tabularnewline
means & 0 & 0.833 & 0.667 & 0.375 & 0.833 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=141031&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]E  ~  S[/C][/ROW]
[ROW][C]means[/C][C]0[/C][C]0.833[/C][C]0.667[/C][C]0.375[/C][C]0.833[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=141031&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=141031&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
E ~ S
means00.8330.6670.3750.833







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
S41.30.3250.3690.829
Residuals2522.0420.882

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
S & 4 & 1.3 & 0.325 & 0.369 & 0.829 \tabularnewline
Residuals & 25 & 22.042 & 0.882 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=141031&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]S[/C][C]4[/C][C]1.3[/C][C]0.325[/C][C]0.369[/C][C]0.829[/C][/ROW]
[ROW][C]Residuals[/C][C]25[/C][C]22.042[/C][C]0.882[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=141031&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=141031&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
S41.30.3250.3690.829
Residuals2522.0420.882







Tukey Honest Significant Difference Comparisons
difflwruprp adj
0--10.833-2.1453.8120.921
1--10.667-2.2043.5370.959
2--10.375-2.553.30.995
NA--10.833-2.3514.0180.937
1-0-0.167-1.5451.2120.996
2-0-0.458-1.9481.0310.893
NA-00-1.951.951
2-1-0.292-1.550.9670.959
NA-10.167-1.6131.9470.999
NA-20.458-1.4092.3250.95

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
0--1 & 0.833 & -2.145 & 3.812 & 0.921 \tabularnewline
1--1 & 0.667 & -2.204 & 3.537 & 0.959 \tabularnewline
2--1 & 0.375 & -2.55 & 3.3 & 0.995 \tabularnewline
NA--1 & 0.833 & -2.351 & 4.018 & 0.937 \tabularnewline
1-0 & -0.167 & -1.545 & 1.212 & 0.996 \tabularnewline
2-0 & -0.458 & -1.948 & 1.031 & 0.893 \tabularnewline
NA-0 & 0 & -1.95 & 1.95 & 1 \tabularnewline
2-1 & -0.292 & -1.55 & 0.967 & 0.959 \tabularnewline
NA-1 & 0.167 & -1.613 & 1.947 & 0.999 \tabularnewline
NA-2 & 0.458 & -1.409 & 2.325 & 0.95 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=141031&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]0--1[/C][C]0.833[/C][C]-2.145[/C][C]3.812[/C][C]0.921[/C][/ROW]
[ROW][C]1--1[/C][C]0.667[/C][C]-2.204[/C][C]3.537[/C][C]0.959[/C][/ROW]
[ROW][C]2--1[/C][C]0.375[/C][C]-2.55[/C][C]3.3[/C][C]0.995[/C][/ROW]
[ROW][C]NA--1[/C][C]0.833[/C][C]-2.351[/C][C]4.018[/C][C]0.937[/C][/ROW]
[ROW][C]1-0[/C][C]-0.167[/C][C]-1.545[/C][C]1.212[/C][C]0.996[/C][/ROW]
[ROW][C]2-0[/C][C]-0.458[/C][C]-1.948[/C][C]1.031[/C][C]0.893[/C][/ROW]
[ROW][C]NA-0[/C][C]0[/C][C]-1.95[/C][C]1.95[/C][C]1[/C][/ROW]
[ROW][C]2-1[/C][C]-0.292[/C][C]-1.55[/C][C]0.967[/C][C]0.959[/C][/ROW]
[ROW][C]NA-1[/C][C]0.167[/C][C]-1.613[/C][C]1.947[/C][C]0.999[/C][/ROW]
[ROW][C]NA-2[/C][C]0.458[/C][C]-1.409[/C][C]2.325[/C][C]0.95[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=141031&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=141031&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
0--10.833-2.1453.8120.921
1--10.667-2.2043.5370.959
2--10.375-2.553.30.995
NA--10.833-2.3514.0180.937
1-0-0.167-1.5451.2120.996
2-0-0.458-1.9481.0310.893
NA-00-1.951.951
2-1-0.292-1.550.9670.959
NA-10.167-1.6131.9470.999
NA-20.458-1.4092.3250.95







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group42.2260.095
25

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 4 & 2.226 & 0.095 \tabularnewline
  & 25 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=141031&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]4[/C][C]2.226[/C][C]0.095[/C][/ROW]
[ROW][C] [/C][C]25[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=141031&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=141031&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group42.2260.095
25



Parameters (Session):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
Parameters (R input):
par1 = 1 ; par2 = 2 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-levene.test(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')