Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationThu, 22 Dec 2011 13:28:10 -0500
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/Dec/22/t13245785013fv38hr36kag7p3.htm/, Retrieved Fri, 03 May 2024 09:57:00 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=159824, Retrieved Fri, 03 May 2024 09:57:00 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [] [2008-12-08 19:22:39] [d2d412c7f4d35ffbf5ee5ee89db327d4]
- RMPD    [(Partial) Autocorrelation Function] [] [2011-12-22 18:28:10] [aedc5b8e4f26bdca34b1a0cf88d6dfa2] [Current]
Feedback Forum

Post a new message
Dataseries X:
1.2613
1.2646
1.2262
1.1985
1.2007
1.2138
1.2266
1.2176
1.2218
1.249
1.2991
1.3408
1.3119
1.3014
1.3201
1.2938
1.2694
1.2165
1.2037
1.2292
1.2256
1.2015
1.1786
1.1856
1.2103
1.1938
1.202
1.2271
1.277
1.265
1.2684
1.2811
1.2727
1.2611
1.2881
1.3213
1.2999
1.3074
1.3242
1.3516
1.3511
1.3419
1.3716
1.3622
1.3896
1.4227
1.4684
1.457
1.4718
1.4748
1.5527
1.575
1.5557
1.5553
1.577
1.4975
1.437
1.3322
1.2732
1.3449
1.3239
1.2785
1.305
1.319
1.365
1.4016
1.4088
1.4268
1.4562
1.4816
1.4914
1.4614
1.4272
1.3686
1.3569
1.3406
1.2565
1.2208
1.277
1.2894
1.3067
1.3898
1.3661
1.322
1.336
1.3649
1.3999
1.4442
1.4349
1.4388
1.4264
1.4343
1.377
1.3706
1.3556




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ jenkins.wessa.net \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=159824&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ jenkins.wessa.net[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=159824&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=159824&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ jenkins.wessa.net







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.3821983.46090.000429
20.0663760.60110.27473
30.0852180.77170.221261
40.02950.26710.395019
50.0656330.59430.276962
6-0.113625-1.02890.153273
7-0.380703-3.44740.000448
8-0.26804-2.42720.008703
9-0.17087-1.54730.062822
10-0.130043-1.17760.121184
11-0.179283-1.62350.054163
12-0.474216-4.29422.4e-05
13-0.166316-1.50610.067948
140.0770450.69770.243678
150.1185381.07340.143118
160.1920421.7390.042893
170.1593071.44260.076473
180.1910051.72960.04373
190.3302842.99090.001836
200.2019651.82890.035527
210.1037410.93940.175138
220.0639120.57870.282172
23-0.190156-1.72190.044426
24-0.09166-0.830.204469
25-0.036937-0.33450.369436
26-0.117249-1.06170.145736
27-0.1896-1.71690.044886
28-0.24789-2.24470.013739
29-0.211436-1.91460.029514
30-0.074739-0.67680.250223
31-0.082187-0.74420.229431
32-0.061539-0.55730.289433
33-0.05707-0.51680.303345
340.0480350.4350.332362
350.2783272.52040.006831
360.2107571.90850.029913
370.0666690.60370.273851
380.0193490.17520.430673
390.1224641.1090.135344
400.2125711.92490.028854
410.0942350.85330.197981
42-0.085175-0.77130.221375
43-0.045775-0.41450.339793
44-0.017273-0.15640.438045
450.0005120.00460.498155
46-0.072792-0.65920.255821
47-0.17953-1.62570.053924
48-0.157678-1.42780.078568

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.382198 & 3.4609 & 0.000429 \tabularnewline
2 & 0.066376 & 0.6011 & 0.27473 \tabularnewline
3 & 0.085218 & 0.7717 & 0.221261 \tabularnewline
4 & 0.0295 & 0.2671 & 0.395019 \tabularnewline
5 & 0.065633 & 0.5943 & 0.276962 \tabularnewline
6 & -0.113625 & -1.0289 & 0.153273 \tabularnewline
7 & -0.380703 & -3.4474 & 0.000448 \tabularnewline
8 & -0.26804 & -2.4272 & 0.008703 \tabularnewline
9 & -0.17087 & -1.5473 & 0.062822 \tabularnewline
10 & -0.130043 & -1.1776 & 0.121184 \tabularnewline
11 & -0.179283 & -1.6235 & 0.054163 \tabularnewline
12 & -0.474216 & -4.2942 & 2.4e-05 \tabularnewline
13 & -0.166316 & -1.5061 & 0.067948 \tabularnewline
14 & 0.077045 & 0.6977 & 0.243678 \tabularnewline
15 & 0.118538 & 1.0734 & 0.143118 \tabularnewline
16 & 0.192042 & 1.739 & 0.042893 \tabularnewline
17 & 0.159307 & 1.4426 & 0.076473 \tabularnewline
18 & 0.191005 & 1.7296 & 0.04373 \tabularnewline
19 & 0.330284 & 2.9909 & 0.001836 \tabularnewline
20 & 0.201965 & 1.8289 & 0.035527 \tabularnewline
21 & 0.103741 & 0.9394 & 0.175138 \tabularnewline
22 & 0.063912 & 0.5787 & 0.282172 \tabularnewline
23 & -0.190156 & -1.7219 & 0.044426 \tabularnewline
24 & -0.09166 & -0.83 & 0.204469 \tabularnewline
25 & -0.036937 & -0.3345 & 0.369436 \tabularnewline
26 & -0.117249 & -1.0617 & 0.145736 \tabularnewline
27 & -0.1896 & -1.7169 & 0.044886 \tabularnewline
28 & -0.24789 & -2.2447 & 0.013739 \tabularnewline
29 & -0.211436 & -1.9146 & 0.029514 \tabularnewline
30 & -0.074739 & -0.6768 & 0.250223 \tabularnewline
31 & -0.082187 & -0.7442 & 0.229431 \tabularnewline
32 & -0.061539 & -0.5573 & 0.289433 \tabularnewline
33 & -0.05707 & -0.5168 & 0.303345 \tabularnewline
34 & 0.048035 & 0.435 & 0.332362 \tabularnewline
35 & 0.278327 & 2.5204 & 0.006831 \tabularnewline
36 & 0.210757 & 1.9085 & 0.029913 \tabularnewline
37 & 0.066669 & 0.6037 & 0.273851 \tabularnewline
38 & 0.019349 & 0.1752 & 0.430673 \tabularnewline
39 & 0.122464 & 1.109 & 0.135344 \tabularnewline
40 & 0.212571 & 1.9249 & 0.028854 \tabularnewline
41 & 0.094235 & 0.8533 & 0.197981 \tabularnewline
42 & -0.085175 & -0.7713 & 0.221375 \tabularnewline
43 & -0.045775 & -0.4145 & 0.339793 \tabularnewline
44 & -0.017273 & -0.1564 & 0.438045 \tabularnewline
45 & 0.000512 & 0.0046 & 0.498155 \tabularnewline
46 & -0.072792 & -0.6592 & 0.255821 \tabularnewline
47 & -0.17953 & -1.6257 & 0.053924 \tabularnewline
48 & -0.157678 & -1.4278 & 0.078568 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=159824&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.382198[/C][C]3.4609[/C][C]0.000429[/C][/ROW]
[ROW][C]2[/C][C]0.066376[/C][C]0.6011[/C][C]0.27473[/C][/ROW]
[ROW][C]3[/C][C]0.085218[/C][C]0.7717[/C][C]0.221261[/C][/ROW]
[ROW][C]4[/C][C]0.0295[/C][C]0.2671[/C][C]0.395019[/C][/ROW]
[ROW][C]5[/C][C]0.065633[/C][C]0.5943[/C][C]0.276962[/C][/ROW]
[ROW][C]6[/C][C]-0.113625[/C][C]-1.0289[/C][C]0.153273[/C][/ROW]
[ROW][C]7[/C][C]-0.380703[/C][C]-3.4474[/C][C]0.000448[/C][/ROW]
[ROW][C]8[/C][C]-0.26804[/C][C]-2.4272[/C][C]0.008703[/C][/ROW]
[ROW][C]9[/C][C]-0.17087[/C][C]-1.5473[/C][C]0.062822[/C][/ROW]
[ROW][C]10[/C][C]-0.130043[/C][C]-1.1776[/C][C]0.121184[/C][/ROW]
[ROW][C]11[/C][C]-0.179283[/C][C]-1.6235[/C][C]0.054163[/C][/ROW]
[ROW][C]12[/C][C]-0.474216[/C][C]-4.2942[/C][C]2.4e-05[/C][/ROW]
[ROW][C]13[/C][C]-0.166316[/C][C]-1.5061[/C][C]0.067948[/C][/ROW]
[ROW][C]14[/C][C]0.077045[/C][C]0.6977[/C][C]0.243678[/C][/ROW]
[ROW][C]15[/C][C]0.118538[/C][C]1.0734[/C][C]0.143118[/C][/ROW]
[ROW][C]16[/C][C]0.192042[/C][C]1.739[/C][C]0.042893[/C][/ROW]
[ROW][C]17[/C][C]0.159307[/C][C]1.4426[/C][C]0.076473[/C][/ROW]
[ROW][C]18[/C][C]0.191005[/C][C]1.7296[/C][C]0.04373[/C][/ROW]
[ROW][C]19[/C][C]0.330284[/C][C]2.9909[/C][C]0.001836[/C][/ROW]
[ROW][C]20[/C][C]0.201965[/C][C]1.8289[/C][C]0.035527[/C][/ROW]
[ROW][C]21[/C][C]0.103741[/C][C]0.9394[/C][C]0.175138[/C][/ROW]
[ROW][C]22[/C][C]0.063912[/C][C]0.5787[/C][C]0.282172[/C][/ROW]
[ROW][C]23[/C][C]-0.190156[/C][C]-1.7219[/C][C]0.044426[/C][/ROW]
[ROW][C]24[/C][C]-0.09166[/C][C]-0.83[/C][C]0.204469[/C][/ROW]
[ROW][C]25[/C][C]-0.036937[/C][C]-0.3345[/C][C]0.369436[/C][/ROW]
[ROW][C]26[/C][C]-0.117249[/C][C]-1.0617[/C][C]0.145736[/C][/ROW]
[ROW][C]27[/C][C]-0.1896[/C][C]-1.7169[/C][C]0.044886[/C][/ROW]
[ROW][C]28[/C][C]-0.24789[/C][C]-2.2447[/C][C]0.013739[/C][/ROW]
[ROW][C]29[/C][C]-0.211436[/C][C]-1.9146[/C][C]0.029514[/C][/ROW]
[ROW][C]30[/C][C]-0.074739[/C][C]-0.6768[/C][C]0.250223[/C][/ROW]
[ROW][C]31[/C][C]-0.082187[/C][C]-0.7442[/C][C]0.229431[/C][/ROW]
[ROW][C]32[/C][C]-0.061539[/C][C]-0.5573[/C][C]0.289433[/C][/ROW]
[ROW][C]33[/C][C]-0.05707[/C][C]-0.5168[/C][C]0.303345[/C][/ROW]
[ROW][C]34[/C][C]0.048035[/C][C]0.435[/C][C]0.332362[/C][/ROW]
[ROW][C]35[/C][C]0.278327[/C][C]2.5204[/C][C]0.006831[/C][/ROW]
[ROW][C]36[/C][C]0.210757[/C][C]1.9085[/C][C]0.029913[/C][/ROW]
[ROW][C]37[/C][C]0.066669[/C][C]0.6037[/C][C]0.273851[/C][/ROW]
[ROW][C]38[/C][C]0.019349[/C][C]0.1752[/C][C]0.430673[/C][/ROW]
[ROW][C]39[/C][C]0.122464[/C][C]1.109[/C][C]0.135344[/C][/ROW]
[ROW][C]40[/C][C]0.212571[/C][C]1.9249[/C][C]0.028854[/C][/ROW]
[ROW][C]41[/C][C]0.094235[/C][C]0.8533[/C][C]0.197981[/C][/ROW]
[ROW][C]42[/C][C]-0.085175[/C][C]-0.7713[/C][C]0.221375[/C][/ROW]
[ROW][C]43[/C][C]-0.045775[/C][C]-0.4145[/C][C]0.339793[/C][/ROW]
[ROW][C]44[/C][C]-0.017273[/C][C]-0.1564[/C][C]0.438045[/C][/ROW]
[ROW][C]45[/C][C]0.000512[/C][C]0.0046[/C][C]0.498155[/C][/ROW]
[ROW][C]46[/C][C]-0.072792[/C][C]-0.6592[/C][C]0.255821[/C][/ROW]
[ROW][C]47[/C][C]-0.17953[/C][C]-1.6257[/C][C]0.053924[/C][/ROW]
[ROW][C]48[/C][C]-0.157678[/C][C]-1.4278[/C][C]0.078568[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=159824&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=159824&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.3821983.46090.000429
20.0663760.60110.27473
30.0852180.77170.221261
40.02950.26710.395019
50.0656330.59430.276962
6-0.113625-1.02890.153273
7-0.380703-3.44740.000448
8-0.26804-2.42720.008703
9-0.17087-1.54730.062822
10-0.130043-1.17760.121184
11-0.179283-1.62350.054163
12-0.474216-4.29422.4e-05
13-0.166316-1.50610.067948
140.0770450.69770.243678
150.1185381.07340.143118
160.1920421.7390.042893
170.1593071.44260.076473
180.1910051.72960.04373
190.3302842.99090.001836
200.2019651.82890.035527
210.1037410.93940.175138
220.0639120.57870.282172
23-0.190156-1.72190.044426
24-0.09166-0.830.204469
25-0.036937-0.33450.369436
26-0.117249-1.06170.145736
27-0.1896-1.71690.044886
28-0.24789-2.24470.013739
29-0.211436-1.91460.029514
30-0.074739-0.67680.250223
31-0.082187-0.74420.229431
32-0.061539-0.55730.289433
33-0.05707-0.51680.303345
340.0480350.4350.332362
350.2783272.52040.006831
360.2107571.90850.029913
370.0666690.60370.273851
380.0193490.17520.430673
390.1224641.1090.135344
400.2125711.92490.028854
410.0942350.85330.197981
42-0.085175-0.77130.221375
43-0.045775-0.41450.339793
44-0.017273-0.15640.438045
450.0005120.00460.498155
46-0.072792-0.65920.255821
47-0.17953-1.62570.053924
48-0.157678-1.42780.078568







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.3821983.46090.000429
2-0.093333-0.84520.200238
30.1100470.99650.160965
4-0.047592-0.4310.333814
50.0896740.8120.209562
6-0.21563-1.95260.027139
7-0.306524-2.77570.003411
8-0.040295-0.36490.358069
9-0.081047-0.73390.232549
10-0.013018-0.11790.453226
11-0.146013-1.32220.094888
12-0.448892-4.06495.5e-05
130.1151451.04270.150081
14-0.091246-0.82630.205526
150.1011920.91630.181089
160.0635480.57550.28328
170.0658180.5960.276405
180.0169740.15370.439111
19-0.049485-0.44810.327628
20-0.036413-0.32970.371219
210.0410020.37130.355691
220.0466620.42250.336868
23-0.313953-2.8430.00282
24-0.12541-1.13560.129709
250.0928430.84070.201472
260.0656790.59470.276824
27-0.079281-0.71790.237423
28-0.079639-0.72120.236429
29-0.047476-0.42990.334194
30-0.051162-0.46330.32219
31-0.076441-0.69220.245383
32-0.056644-0.51290.304689
33-0.101693-0.92090.17991
340.0639320.57890.282112
35-0.169645-1.53620.06417
36-0.121716-1.10220.136803
37-0.053211-0.48180.3156
38-0.090332-0.8180.207867
390.0587770.53220.297998
400.0023240.0210.491629
41-0.09409-0.8520.198343
42-0.039627-0.35880.36032
430.0222690.20170.420345
44-0.076019-0.68840.246578
45-0.027954-0.25310.400398
46-0.035234-0.31910.375247
47-0.010251-0.09280.463135
48-0.119368-1.08090.14145

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.382198 & 3.4609 & 0.000429 \tabularnewline
2 & -0.093333 & -0.8452 & 0.200238 \tabularnewline
3 & 0.110047 & 0.9965 & 0.160965 \tabularnewline
4 & -0.047592 & -0.431 & 0.333814 \tabularnewline
5 & 0.089674 & 0.812 & 0.209562 \tabularnewline
6 & -0.21563 & -1.9526 & 0.027139 \tabularnewline
7 & -0.306524 & -2.7757 & 0.003411 \tabularnewline
8 & -0.040295 & -0.3649 & 0.358069 \tabularnewline
9 & -0.081047 & -0.7339 & 0.232549 \tabularnewline
10 & -0.013018 & -0.1179 & 0.453226 \tabularnewline
11 & -0.146013 & -1.3222 & 0.094888 \tabularnewline
12 & -0.448892 & -4.0649 & 5.5e-05 \tabularnewline
13 & 0.115145 & 1.0427 & 0.150081 \tabularnewline
14 & -0.091246 & -0.8263 & 0.205526 \tabularnewline
15 & 0.101192 & 0.9163 & 0.181089 \tabularnewline
16 & 0.063548 & 0.5755 & 0.28328 \tabularnewline
17 & 0.065818 & 0.596 & 0.276405 \tabularnewline
18 & 0.016974 & 0.1537 & 0.439111 \tabularnewline
19 & -0.049485 & -0.4481 & 0.327628 \tabularnewline
20 & -0.036413 & -0.3297 & 0.371219 \tabularnewline
21 & 0.041002 & 0.3713 & 0.355691 \tabularnewline
22 & 0.046662 & 0.4225 & 0.336868 \tabularnewline
23 & -0.313953 & -2.843 & 0.00282 \tabularnewline
24 & -0.12541 & -1.1356 & 0.129709 \tabularnewline
25 & 0.092843 & 0.8407 & 0.201472 \tabularnewline
26 & 0.065679 & 0.5947 & 0.276824 \tabularnewline
27 & -0.079281 & -0.7179 & 0.237423 \tabularnewline
28 & -0.079639 & -0.7212 & 0.236429 \tabularnewline
29 & -0.047476 & -0.4299 & 0.334194 \tabularnewline
30 & -0.051162 & -0.4633 & 0.32219 \tabularnewline
31 & -0.076441 & -0.6922 & 0.245383 \tabularnewline
32 & -0.056644 & -0.5129 & 0.304689 \tabularnewline
33 & -0.101693 & -0.9209 & 0.17991 \tabularnewline
34 & 0.063932 & 0.5789 & 0.282112 \tabularnewline
35 & -0.169645 & -1.5362 & 0.06417 \tabularnewline
36 & -0.121716 & -1.1022 & 0.136803 \tabularnewline
37 & -0.053211 & -0.4818 & 0.3156 \tabularnewline
38 & -0.090332 & -0.818 & 0.207867 \tabularnewline
39 & 0.058777 & 0.5322 & 0.297998 \tabularnewline
40 & 0.002324 & 0.021 & 0.491629 \tabularnewline
41 & -0.09409 & -0.852 & 0.198343 \tabularnewline
42 & -0.039627 & -0.3588 & 0.36032 \tabularnewline
43 & 0.022269 & 0.2017 & 0.420345 \tabularnewline
44 & -0.076019 & -0.6884 & 0.246578 \tabularnewline
45 & -0.027954 & -0.2531 & 0.400398 \tabularnewline
46 & -0.035234 & -0.3191 & 0.375247 \tabularnewline
47 & -0.010251 & -0.0928 & 0.463135 \tabularnewline
48 & -0.119368 & -1.0809 & 0.14145 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=159824&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.382198[/C][C]3.4609[/C][C]0.000429[/C][/ROW]
[ROW][C]2[/C][C]-0.093333[/C][C]-0.8452[/C][C]0.200238[/C][/ROW]
[ROW][C]3[/C][C]0.110047[/C][C]0.9965[/C][C]0.160965[/C][/ROW]
[ROW][C]4[/C][C]-0.047592[/C][C]-0.431[/C][C]0.333814[/C][/ROW]
[ROW][C]5[/C][C]0.089674[/C][C]0.812[/C][C]0.209562[/C][/ROW]
[ROW][C]6[/C][C]-0.21563[/C][C]-1.9526[/C][C]0.027139[/C][/ROW]
[ROW][C]7[/C][C]-0.306524[/C][C]-2.7757[/C][C]0.003411[/C][/ROW]
[ROW][C]8[/C][C]-0.040295[/C][C]-0.3649[/C][C]0.358069[/C][/ROW]
[ROW][C]9[/C][C]-0.081047[/C][C]-0.7339[/C][C]0.232549[/C][/ROW]
[ROW][C]10[/C][C]-0.013018[/C][C]-0.1179[/C][C]0.453226[/C][/ROW]
[ROW][C]11[/C][C]-0.146013[/C][C]-1.3222[/C][C]0.094888[/C][/ROW]
[ROW][C]12[/C][C]-0.448892[/C][C]-4.0649[/C][C]5.5e-05[/C][/ROW]
[ROW][C]13[/C][C]0.115145[/C][C]1.0427[/C][C]0.150081[/C][/ROW]
[ROW][C]14[/C][C]-0.091246[/C][C]-0.8263[/C][C]0.205526[/C][/ROW]
[ROW][C]15[/C][C]0.101192[/C][C]0.9163[/C][C]0.181089[/C][/ROW]
[ROW][C]16[/C][C]0.063548[/C][C]0.5755[/C][C]0.28328[/C][/ROW]
[ROW][C]17[/C][C]0.065818[/C][C]0.596[/C][C]0.276405[/C][/ROW]
[ROW][C]18[/C][C]0.016974[/C][C]0.1537[/C][C]0.439111[/C][/ROW]
[ROW][C]19[/C][C]-0.049485[/C][C]-0.4481[/C][C]0.327628[/C][/ROW]
[ROW][C]20[/C][C]-0.036413[/C][C]-0.3297[/C][C]0.371219[/C][/ROW]
[ROW][C]21[/C][C]0.041002[/C][C]0.3713[/C][C]0.355691[/C][/ROW]
[ROW][C]22[/C][C]0.046662[/C][C]0.4225[/C][C]0.336868[/C][/ROW]
[ROW][C]23[/C][C]-0.313953[/C][C]-2.843[/C][C]0.00282[/C][/ROW]
[ROW][C]24[/C][C]-0.12541[/C][C]-1.1356[/C][C]0.129709[/C][/ROW]
[ROW][C]25[/C][C]0.092843[/C][C]0.8407[/C][C]0.201472[/C][/ROW]
[ROW][C]26[/C][C]0.065679[/C][C]0.5947[/C][C]0.276824[/C][/ROW]
[ROW][C]27[/C][C]-0.079281[/C][C]-0.7179[/C][C]0.237423[/C][/ROW]
[ROW][C]28[/C][C]-0.079639[/C][C]-0.7212[/C][C]0.236429[/C][/ROW]
[ROW][C]29[/C][C]-0.047476[/C][C]-0.4299[/C][C]0.334194[/C][/ROW]
[ROW][C]30[/C][C]-0.051162[/C][C]-0.4633[/C][C]0.32219[/C][/ROW]
[ROW][C]31[/C][C]-0.076441[/C][C]-0.6922[/C][C]0.245383[/C][/ROW]
[ROW][C]32[/C][C]-0.056644[/C][C]-0.5129[/C][C]0.304689[/C][/ROW]
[ROW][C]33[/C][C]-0.101693[/C][C]-0.9209[/C][C]0.17991[/C][/ROW]
[ROW][C]34[/C][C]0.063932[/C][C]0.5789[/C][C]0.282112[/C][/ROW]
[ROW][C]35[/C][C]-0.169645[/C][C]-1.5362[/C][C]0.06417[/C][/ROW]
[ROW][C]36[/C][C]-0.121716[/C][C]-1.1022[/C][C]0.136803[/C][/ROW]
[ROW][C]37[/C][C]-0.053211[/C][C]-0.4818[/C][C]0.3156[/C][/ROW]
[ROW][C]38[/C][C]-0.090332[/C][C]-0.818[/C][C]0.207867[/C][/ROW]
[ROW][C]39[/C][C]0.058777[/C][C]0.5322[/C][C]0.297998[/C][/ROW]
[ROW][C]40[/C][C]0.002324[/C][C]0.021[/C][C]0.491629[/C][/ROW]
[ROW][C]41[/C][C]-0.09409[/C][C]-0.852[/C][C]0.198343[/C][/ROW]
[ROW][C]42[/C][C]-0.039627[/C][C]-0.3588[/C][C]0.36032[/C][/ROW]
[ROW][C]43[/C][C]0.022269[/C][C]0.2017[/C][C]0.420345[/C][/ROW]
[ROW][C]44[/C][C]-0.076019[/C][C]-0.6884[/C][C]0.246578[/C][/ROW]
[ROW][C]45[/C][C]-0.027954[/C][C]-0.2531[/C][C]0.400398[/C][/ROW]
[ROW][C]46[/C][C]-0.035234[/C][C]-0.3191[/C][C]0.375247[/C][/ROW]
[ROW][C]47[/C][C]-0.010251[/C][C]-0.0928[/C][C]0.463135[/C][/ROW]
[ROW][C]48[/C][C]-0.119368[/C][C]-1.0809[/C][C]0.14145[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=159824&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=159824&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.3821983.46090.000429
2-0.093333-0.84520.200238
30.1100470.99650.160965
4-0.047592-0.4310.333814
50.0896740.8120.209562
6-0.21563-1.95260.027139
7-0.306524-2.77570.003411
8-0.040295-0.36490.358069
9-0.081047-0.73390.232549
10-0.013018-0.11790.453226
11-0.146013-1.32220.094888
12-0.448892-4.06495.5e-05
130.1151451.04270.150081
14-0.091246-0.82630.205526
150.1011920.91630.181089
160.0635480.57550.28328
170.0658180.5960.276405
180.0169740.15370.439111
19-0.049485-0.44810.327628
20-0.036413-0.32970.371219
210.0410020.37130.355691
220.0466620.42250.336868
23-0.313953-2.8430.00282
24-0.12541-1.13560.129709
250.0928430.84070.201472
260.0656790.59470.276824
27-0.079281-0.71790.237423
28-0.079639-0.72120.236429
29-0.047476-0.42990.334194
30-0.051162-0.46330.32219
31-0.076441-0.69220.245383
32-0.056644-0.51290.304689
33-0.101693-0.92090.17991
340.0639320.57890.282112
35-0.169645-1.53620.06417
36-0.121716-1.10220.136803
37-0.053211-0.48180.3156
38-0.090332-0.8180.207867
390.0587770.53220.297998
400.0023240.0210.491629
41-0.09409-0.8520.198343
42-0.039627-0.35880.36032
430.0222690.20170.420345
44-0.076019-0.68840.246578
45-0.027954-0.25310.400398
46-0.035234-0.31910.375247
47-0.010251-0.09280.463135
48-0.119368-1.08090.14145



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')