Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_samplenorm.wasp
Title produced by softwareMinimum Sample Size - Testing Mean
Date of computationFri, 22 Oct 2010 18:24:51 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Oct/22/t1287771888zk2yszh7s5b8p45.htm/, Retrieved Wed, 11 Dec 2024 19:19:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=87546, Retrieved Wed, 11 Dec 2024 19:19:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact193
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Factor Analysis] [Sleep in Mammals ...] [2010-03-21 11:39:53] [b98453cac15ba1066b407e146608df68]
- RMPD  [Testing Mean with unknown Variance - Critical Value] [Hypothesis Test a...] [2010-10-19 11:45:26] [b98453cac15ba1066b407e146608df68]
-   PD    [Testing Mean with unknown Variance - Critical Value] [Workshop 4 - oefe...] [2010-10-22 14:42:05] [95e8426e0df851c9330605aa1e892ab5]
F RMPD        [Minimum Sample Size - Testing Mean] [Workshop 4 - oefe...] [2010-10-22 18:24:51] [dc77c696707133dea0955379c56a2acd] [Current]
Feedback Forum
2010-10-29 16:11:58 [Stefanie Van Esbroeck] [reply
De student(e) heeft de juiste test gekozen. Maar bij het ingeven van de parameters. Heeft hij/zij telkens te kleine waarden ingegeven. Dit was zo bij de Margin error: 0,01 ipv 1, bij de confidence: 0,95 ipv 95 bij de P-waarde: 0,13 ipv 13 en bij de Power 0,95 ipv 95.

Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87546&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87546&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87546&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'RServer@AstonUniversity' @ vre.aston.ac.uk







Minimum Sample Size
Population Size105
Margin of Error0.01
Confidence0.95
Power0.95
Population Variance0.13
z(alpha/2) + z(beta)3.60481761149153
z(alpha) + z(beta)3.28970725390294
Minimum Sample Size (2 sided test)104.35753833223
Minimum Sample Size (1 sided test)104.229511458772

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size \tabularnewline
Population Size & 105 \tabularnewline
Margin of Error & 0.01 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.95 \tabularnewline
Population Variance & 0.13 \tabularnewline
z(alpha/2) + z(beta) & 3.60481761149153 \tabularnewline
z(alpha) + z(beta) & 3.28970725390294 \tabularnewline
Minimum Sample Size (2 sided test) & 104.35753833223 \tabularnewline
Minimum Sample Size (1 sided test) & 104.229511458772 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87546&T=1

[TABLE]
[ROW][C]Minimum Sample Size[/C][/ROW]
[ROW][C]Population Size[/C][C]105[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.01[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.95[/C][/ROW]
[ROW][C]Population Variance[/C][C]0.13[/C][/ROW]
[ROW][C]z(alpha/2) + z(beta)[/C][C]3.60481761149153[/C][/ROW]
[ROW][C]z(alpha) + z(beta)[/C][C]3.28970725390294[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]104.35753833223[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]104.229511458772[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87546&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87546&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Minimum Sample Size
Population Size105
Margin of Error0.01
Confidence0.95
Power0.95
Population Variance0.13
z(alpha/2) + z(beta)3.60481761149153
z(alpha) + z(beta)3.28970725390294
Minimum Sample Size (2 sided test)104.35753833223
Minimum Sample Size (1 sided test)104.229511458772







Minimum Sample Size (for Infinite Populations)
Population Sizeinfinite
Margin of Error0.01
Confidence0.95
Power0.95
Population Variance0.13
z(alpha/2) + z(beta)3.60481761149153
z(alpha) + z(beta)3.28970725390294
Minimum Sample Size (2 sided test)16893.1230157553
Minimum Sample Size (1 sided test)14068.8259612961

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size (for Infinite Populations) \tabularnewline
Population Size & infinite \tabularnewline
Margin of Error & 0.01 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.95 \tabularnewline
Population Variance & 0.13 \tabularnewline
z(alpha/2) + z(beta) & 3.60481761149153 \tabularnewline
z(alpha) + z(beta) & 3.28970725390294 \tabularnewline
Minimum Sample Size (2 sided test) & 16893.1230157553 \tabularnewline
Minimum Sample Size (1 sided test) & 14068.8259612961 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87546&T=2

[TABLE]
[ROW][C]Minimum Sample Size (for Infinite Populations)[/C][/ROW]
[ROW][C]Population Size[/C][C]infinite[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.01[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.95[/C][/ROW]
[ROW][C]Population Variance[/C][C]0.13[/C][/ROW]
[ROW][C]z(alpha/2) + z(beta)[/C][C]3.60481761149153[/C][/ROW]
[ROW][C]z(alpha) + z(beta)[/C][C]3.28970725390294[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]16893.1230157553[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]14068.8259612961[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87546&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87546&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Minimum Sample Size (for Infinite Populations)
Population Sizeinfinite
Margin of Error0.01
Confidence0.95
Power0.95
Population Variance0.13
z(alpha/2) + z(beta)3.60481761149153
z(alpha) + z(beta)3.28970725390294
Minimum Sample Size (2 sided test)16893.1230157553
Minimum Sample Size (1 sided test)14068.8259612961







Minimum Sample Size (Unknown Population Variance)
Population Size105
Margin of Error0.01
Confidence0.95
Power0.95
Population Varianceunknown
t(alpha/2) + t(beta)3.64291277451715
t(alpha) + t(beta)3.31949756270803
Minimum Sample Size (2 sided test)104.370824855664
Minimum Sample Size (1 sided test)104.243179429553

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size (Unknown Population Variance) \tabularnewline
Population Size & 105 \tabularnewline
Margin of Error & 0.01 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.95 \tabularnewline
Population Variance & unknown \tabularnewline
t(alpha/2) + t(beta) & 3.64291277451715 \tabularnewline
t(alpha) + t(beta) & 3.31949756270803 \tabularnewline
Minimum Sample Size (2 sided test) & 104.370824855664 \tabularnewline
Minimum Sample Size (1 sided test) & 104.243179429553 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87546&T=3

[TABLE]
[ROW][C]Minimum Sample Size (Unknown Population Variance)[/C][/ROW]
[ROW][C]Population Size[/C][C]105[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.01[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.95[/C][/ROW]
[ROW][C]Population Variance[/C][C]unknown[/C][/ROW]
[ROW][C]t(alpha/2) + t(beta)[/C][C]3.64291277451715[/C][/ROW]
[ROW][C]t(alpha) + t(beta)[/C][C]3.31949756270803[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]104.370824855664[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]104.243179429553[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87546&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87546&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Minimum Sample Size (Unknown Population Variance)
Population Size105
Margin of Error0.01
Confidence0.95
Power0.95
Population Varianceunknown
t(alpha/2) + t(beta)3.64291277451715
t(alpha) + t(beta)3.31949756270803
Minimum Sample Size (2 sided test)104.370824855664
Minimum Sample Size (1 sided test)104.243179429553







Minimum Sample Size(Infinite Population, Unknown Population Variance)
Population Sizeinfinite
Margin of Error0.01
Confidence0.95
Power0.95
Population Varianceunknown
t(alpha/2) + t(beta)3.60504826879559
t(alpha) + t(beta)3.28992390004439
Minimum Sample Size (2 sided test)16895.2849264499
Minimum Sample Size (1 sided test)14070.6790485083

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size(Infinite Population, Unknown Population Variance) \tabularnewline
Population Size & infinite \tabularnewline
Margin of Error & 0.01 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.95 \tabularnewline
Population Variance & unknown \tabularnewline
t(alpha/2) + t(beta) & 3.60504826879559 \tabularnewline
t(alpha) + t(beta) & 3.28992390004439 \tabularnewline
Minimum Sample Size (2 sided test) & 16895.2849264499 \tabularnewline
Minimum Sample Size (1 sided test) & 14070.6790485083 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87546&T=4

[TABLE]
[ROW][C]Minimum Sample Size(Infinite Population, Unknown Population Variance)[/C][/ROW]
[ROW][C]Population Size[/C][C]infinite[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.01[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.95[/C][/ROW]
[ROW][C]Population Variance[/C][C]unknown[/C][/ROW]
[ROW][C]t(alpha/2) + t(beta)[/C][C]3.60504826879559[/C][/ROW]
[ROW][C]t(alpha) + t(beta)[/C][C]3.28992390004439[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]16895.2849264499[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]14070.6790485083[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87546&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87546&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Minimum Sample Size(Infinite Population, Unknown Population Variance)
Population Sizeinfinite
Margin of Error0.01
Confidence0.95
Power0.95
Population Varianceunknown
t(alpha/2) + t(beta)3.60504826879559
t(alpha) + t(beta)3.28992390004439
Minimum Sample Size (2 sided test)16895.2849264499
Minimum Sample Size (1 sided test)14070.6790485083



Parameters (Session):
par1 = 105 ; par2 = 0.01 ; par3 = 0.95 ; par4 = 0.13 ; par5 = 0.95 ;
Parameters (R input):
par1 = 105 ; par2 = 0.01 ; par3 = 0.95 ; par4 = 0.13 ; par5 = 0.95 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
(z <- abs(qnorm((1-par3)/2)) + abs(qnorm(1-par5)))
(z1 <- abs(qnorm(1-par3)) + abs(qnorm(1-par5)))
z2 <- z*z
z2one <- z1*z1
z24 <- z2 * par4
z24one <- z2one * par4
npop <- array(NA, 200)
ppop <- array(NA, 200)
for (i in 1:200)
{
ppop[i] <- i * 100
npop[i] <- ppop[i] * z24 / (z24 + (ppop[i] - 1) * par2*par2)
}
bitmap(file='pic1.png')
plot(ppop,npop, xlab='population size', ylab='sample size (2 sided test)', main = paste('Confidence',par3))
dumtext <- paste('Margin of error = ',par2)
dumtext <- paste(dumtext,' Population Var. = ')
dumtext <- paste(dumtext, par4)
mtext(dumtext)
grid()
dev.off()
par2sq <- par2 * par2
num <- par1 * z24
denom <- z24 + (par1 - 1) * par2sq
(n <- num/denom)
num1 <- par1 * z24one
denom1 <- z24one + (par1 - 1) * par2sq
(n1 <- num1/denom1)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Size',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Margin of Error',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Power',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Variance',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)
a<-table.element(a,z)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)
a<-table.element(a,z1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
a<-table.element(a,n1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
(ni <- z24 / (par2sq))
(ni1 <- z24one / (par2sq))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (for Infinite Populations)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Size',header=TRUE)
a<-table.element(a,'infinite')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Margin of Error',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Power',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Variance',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)
a<-table.element(a,z)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)
a<-table.element(a,z1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
a<-table.element(a,ni)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
a<-table.element(a,ni1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
(z <- abs(qt((1-par3)/2,n-1)) + abs(qt(1-par5,n-1)))
(z1 <- abs(qt(1-par3,n1-1)) + abs(qt(1-par5,n1-1)))
z2 <- z*z
z2one <- z1*z1
z24 <- z2 * par4
z24one <- z2one * par4
par2sq <- par2 * par2
num <- par1 * z24
denom <- z24 + (par1 - 1) * par2sq
(n <- num/denom)
num1 <- par1 * z24one
denom1 <- z24one + (par1 - 1) * par2sq
(n1 <- num1/denom1)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (Unknown Population Variance)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Size',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Margin of Error',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Power',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Variance',header=TRUE)
a<-table.element(a,'unknown')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE)
a<-table.element(a,z)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t(alpha) + t(beta)',header=TRUE)
a<-table.element(a,z1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
a<-table.element(a,n)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
a<-table.element(a,n1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
(z <- abs(qt((1-par3)/2,ni-1)) + abs(qt(1-par5,ni-1)))
(z1 <- abs(qt(1-par3,ni1-1)) + abs(qt(1-par5,ni1-1)))
z2 <- z*z
z2one <- z1*z1
z24 <- z2 * par4
z24one <- z2one * par4
(ni <- z24 / (par2sq))
(ni1 <- z24one / (par2sq))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size
(Infinite Population, Unknown Population Variance)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Size',header=TRUE)
a<-table.element(a,'infinite')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Margin of Error',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Power',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Population Variance',header=TRUE)
a<-table.element(a,'unknown')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE)
a<-table.element(a,z)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t(alpha) + t(beta)',header=TRUE)
a<-table.element(a,z1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
a<-table.element(a,ni)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
a<-table.element(a,ni1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')