Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_hypothesismeanu.wasp
Title produced by softwareTesting Mean with unknown Variance - Critical Value
Date of computationFri, 22 Oct 2010 12:21:39 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Oct/22/t12877500095b7p82bgy2wpi35.htm/, Retrieved Sat, 25 May 2024 04:08:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=87421, Retrieved Sat, 25 May 2024 04:08:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact148
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Percentiles] [Intrinsic Motivat...] [2010-10-12 12:10:58] [b98453cac15ba1066b407e146608df68]
- RMPD  [Testing Mean with unknown Variance - Critical Value] [Question 3.3] [2010-10-22 12:12:58] [4a7069087cf9e0eda253aeed7d8c30d6]
F    D      [Testing Mean with unknown Variance - Critical Value] [Question 2] [2010-10-22 12:21:39] [cfd788255f1b1b5389e58d7f218c70bf] [Current]
Feedback Forum
2010-11-02 15:26:30 [4d4f7d38b8a37a3fb90a9939352fc7e6] [reply
Hypothese test 1
Hier is de standard deviatie onbekend en gaan we gebruik maken van een éénzijdige t-test. Hierbij zien we dat de nul hypothese wordt verstoten, nl 0,62925... > H0, m.a.w. het ligt buiten het 95% betrouwbaarheidsinterval.
[ 0.629250852395173 , +inf ]

Hypothese test2
Hier is ook de standard deviatie onbekend en gaan we gebruik maken van een tweezijdige t-test. Hierbij wordt de nulhypothese verworpen, aangezien deze buiten het betrouwbaarheidsinterval van 95% ligt
[ 0.340093327772767 , 0.688478100798662 ].

Hypothese test3
Hier is ook de standard deviatie onbekend en gaan we gebruik maken van een tweezijdige t-test. Hierbij wordt de nulhypothese geaccepteerd aangezien deze binnen het betrouwbaarheidsinterval van 95% ligt
[ -0.128085086527478 , 0.242370800813192 ]

Post a new message
Dataseries X:
1
1
1
0
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
0
1
1
0
0
1
0
1
0
0
1
0
1
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
1
1
0
1
1
1
1
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
0
0
1
0
0
0
1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87421&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87421&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87421&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Hypothesis Test about the Mean - Confidence Interval
Sample size105
Sample standard deviation0.482856275873249
Confidence0.95
Null hypothesis0.466666667
Sample Mean0.638095238095238
2-sided Confidence Interval[ 0.544650647911813 , 0.731539828278663 ]
Left-sided Confidence Interval[ 0.559889889957816 , +inf ]
Right-sided Confidence Interval[ -inf, 0.71630058623266 ]

\begin{tabular}{lllllllll}
\hline
Hypothesis Test about the Mean - Confidence Interval \tabularnewline
Sample size & 105 \tabularnewline
Sample standard deviation & 0.482856275873249 \tabularnewline
Confidence & 0.95 \tabularnewline
Null hypothesis & 0.466666667 \tabularnewline
Sample Mean & 0.638095238095238 \tabularnewline
2-sided Confidence Interval & [ 0.544650647911813 , 0.731539828278663 ] \tabularnewline
Left-sided Confidence Interval & [ 0.559889889957816 , +inf ] \tabularnewline
Right-sided Confidence Interval & [ -inf,  0.71630058623266 ] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87421&T=1

[TABLE]
[ROW][C]Hypothesis Test about the Mean - Confidence Interval[/C][/ROW]
[ROW][C]Sample size[/C][C]105[/C][/ROW]
[ROW][C]Sample standard deviation[/C][C]0.482856275873249[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Null hypothesis[/C][C]0.466666667[/C][/ROW]
[ROW][C]Sample Mean[/C][C]0.638095238095238[/C][/ROW]
[ROW][C]2-sided Confidence Interval[/C][C][ 0.544650647911813 , 0.731539828278663 ][/C][/ROW]
[ROW][C]Left-sided Confidence Interval[/C][C][ 0.559889889957816 , +inf ][/C][/ROW]
[ROW][C]Right-sided Confidence Interval[/C][C][ -inf,  0.71630058623266 ][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87421&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87421&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Hypothesis Test about the Mean - Confidence Interval
Sample size105
Sample standard deviation0.482856275873249
Confidence0.95
Null hypothesis0.466666667
Sample Mean0.638095238095238
2-sided Confidence Interval[ 0.544650647911813 , 0.731539828278663 ]
Left-sided Confidence Interval[ 0.559889889957816 , +inf ]
Right-sided Confidence Interval[ -inf, 0.71630058623266 ]



Parameters (Session):
par1 = 0.95 ; par2 = 0.466666667 ;
Parameters (R input):
par1 = 0.95 ; par2 = 0.466666667 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
len <- length(x)
df <- len - 1
sd <- sd(x)
mx <- mean(x)
load(file='createtable')
delta2 <- abs(qt((1-par1)/2,df)) * sd / sqrt(len)
delta1 <- abs(qt((1-par1),df)) * sd / sqrt(len)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Hypothesis Test about the Mean - Confidence Interval',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Sample size',header=TRUE)
a<-table.element(a,len)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Sample standard deviation',header=TRUE)
a<-table.element(a,sd)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Confidence',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Null hypothesis',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Sample Mean',header=TRUE)
a<-table.element(a,mx)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'2-sided Confidence Interval',header=TRUE)
dum <- paste('[',mx-delta2)
dum <- paste(dum,',')
dum <- paste(dum,mx+delta2)
dum <- paste(dum,']')
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Left-sided Confidence Interval',header=TRUE)
dum <- paste('[',mx-delta1)
dum <- paste(dum,', +inf ]')
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Right-sided Confidence Interval',header=TRUE)
dum <- paste('[ -inf, ',mx+delta1)
dum <- paste(dum,']')
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')