## Free Statistics

of Irreproducible Research!

Author's title
Author*The author of this computation has been verified*
R Software Modulerwasp_samplenorm.wasp
Title produced by softwareMinimum Sample Size - Testing Mean
Date of computationFri, 22 Oct 2010 08:40:42 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Oct/22/t128773682655tql62w72iy6i1.htm/, Retrieved Thu, 18 Apr 2024 19:20:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=87336, Retrieved Thu, 18 Apr 2024 19:20:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact178
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Minimum Sample Size - Testing Mean] [Task 11: Minimum ...] [2010-10-22 08:40:42] [b4ba846736d082ffaee409a197f454c7] [Current]
-   P     [Minimum Sample Size - Testing Mean] [WS 4 Taak 11] [2010-10-26 09:50:32] [c289bfbb56808c5d93a0f55b5d39f5bd]
- R P     [Minimum Sample Size - Testing Mean] [WS4 taak 8 (nieuw)] [2010-10-26 09:53:48] [c289bfbb56808c5d93a0f55b5d39f5bd]
F R P     [Minimum Sample Size - Testing Mean] [WS taak 11 (nieuw)] [2010-10-26 09:53:48] [c289bfbb56808c5d93a0f55b5d39f5bd]
Feedback Forum

Post a new message

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 2 seconds R Server 'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87336&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87336&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87336&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 2 seconds R Server 'RServer@AstonUniversity' @ vre.aston.ac.uk

 Minimum Sample Size Population Size 105 Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance 0.13 z(alpha/2) + z(beta) 1.95996398454005 z(alpha) + z(beta) 1.64485362695147 Minimum Sample Size (2 sided test) 69.0500761118014 Minimum Sample Size (1 sided test) 60.3717860543336

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size \tabularnewline
Population Size & 105 \tabularnewline
Margin of Error & 0.05 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.5 \tabularnewline
Population Variance & 0.13 \tabularnewline
z(alpha/2) + z(beta) & 1.95996398454005 \tabularnewline
z(alpha) + z(beta) & 1.64485362695147 \tabularnewline
Minimum Sample Size (2 sided test) & 69.0500761118014 \tabularnewline
Minimum Sample Size (1 sided test) & 60.3717860543336 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87336&T=1

[TABLE]
[ROW][C]Minimum Sample Size[/C][/ROW]
[ROW][C]Population Size[/C][C]105[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.05[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.5[/C][/ROW]
[ROW][C]Population Variance[/C][C]0.13[/C][/ROW]
[ROW][C]z(alpha/2) + z(beta)[/C][C]1.95996398454005[/C][/ROW]
[ROW][C]z(alpha) + z(beta)[/C][C]1.64485362695147[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]69.0500761118014[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]60.3717860543336[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87336&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87336&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Minimum Sample Size Population Size 105 Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance 0.13 z(alpha/2) + z(beta) 1.95996398454005 z(alpha) + z(beta) 1.64485362695147 Minimum Sample Size (2 sided test) 69.0500761118014 Minimum Sample Size (1 sided test) 60.3717860543336

 Minimum Sample Size (for Infinite Populations) Population Size infinite Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance 0.13 z(alpha/2) + z(beta) 1.95996398454005 z(alpha) + z(beta) 1.64485362695147 Minimum Sample Size (2 sided test) 199.755858676094 Minimum Sample Size (1 sided test) 140.688259612961

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size (for Infinite Populations) \tabularnewline
Population Size & infinite \tabularnewline
Margin of Error & 0.05 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.5 \tabularnewline
Population Variance & 0.13 \tabularnewline
z(alpha/2) + z(beta) & 1.95996398454005 \tabularnewline
z(alpha) + z(beta) & 1.64485362695147 \tabularnewline
Minimum Sample Size (2 sided test) & 199.755858676094 \tabularnewline
Minimum Sample Size (1 sided test) & 140.688259612961 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87336&T=2

[TABLE]
[ROW][C]Minimum Sample Size (for Infinite Populations)[/C][/ROW]
[ROW][C]Population Size[/C][C]infinite[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.05[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.5[/C][/ROW]
[ROW][C]Population Variance[/C][C]0.13[/C][/ROW]
[ROW][C]z(alpha/2) + z(beta)[/C][C]1.95996398454005[/C][/ROW]
[ROW][C]z(alpha) + z(beta)[/C][C]1.64485362695147[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]199.755858676094[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]140.688259612961[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87336&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87336&T=2

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Minimum Sample Size (for Infinite Populations) Population Size infinite Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance 0.13 z(alpha/2) + z(beta) 1.95996398454005 z(alpha) + z(beta) 1.64485362695147 Minimum Sample Size (2 sided test) 199.755858676094 Minimum Sample Size (1 sided test) 140.688259612961

 Minimum Sample Size (Unknown Population Variance) Population Size 105 Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance unknown t(alpha/2) + t(beta) 1.99544234338915 t(alpha) + t(beta) 1.67092612211084 Minimum Sample Size (2 sided test) 69.8934524813136 Minimum Sample Size (1 sided test) 61.1769076976371

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size (Unknown Population Variance) \tabularnewline
Population Size & 105 \tabularnewline
Margin of Error & 0.05 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.5 \tabularnewline
Population Variance & unknown \tabularnewline
t(alpha/2) + t(beta) & 1.99544234338915 \tabularnewline
t(alpha) + t(beta) & 1.67092612211084 \tabularnewline
Minimum Sample Size (2 sided test) & 69.8934524813136 \tabularnewline
Minimum Sample Size (1 sided test) & 61.1769076976371 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87336&T=3

[TABLE]
[ROW][C]Minimum Sample Size (Unknown Population Variance)[/C][/ROW]
[ROW][C]Population Size[/C][C]105[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.05[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.5[/C][/ROW]
[ROW][C]Population Variance[/C][C]unknown[/C][/ROW]
[ROW][C]t(alpha/2) + t(beta)[/C][C]1.99544234338915[/C][/ROW]
[ROW][C]t(alpha) + t(beta)[/C][C]1.67092612211084[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]69.8934524813136[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]61.1769076976371[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87336&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87336&T=3

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Minimum Sample Size (Unknown Population Variance) Population Size 105 Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance unknown t(alpha/2) + t(beta) 1.99544234338915 t(alpha) + t(beta) 1.67092612211084 Minimum Sample Size (2 sided test) 69.8934524813136 Minimum Sample Size (1 sided test) 61.1769076976371

 Minimum Sample Size(Infinite Population, Unknown Population Variance) Population Size infinite Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance unknown t(alpha/2) + t(beta) 1.97197136374429 t(alpha) + t(beta) 1.65583512700514 Minimum Sample Size (2 sided test) 202.210895090231 Minimum Sample Size (1 sided test) 142.573078326854

\begin{tabular}{lllllllll}
\hline
Minimum Sample Size(Infinite Population, Unknown Population Variance) \tabularnewline
Population Size & infinite \tabularnewline
Margin of Error & 0.05 \tabularnewline
Confidence & 0.95 \tabularnewline
Power & 0.5 \tabularnewline
Population Variance & unknown \tabularnewline
t(alpha/2) + t(beta) & 1.97197136374429 \tabularnewline
t(alpha) + t(beta) & 1.65583512700514 \tabularnewline
Minimum Sample Size (2 sided test) & 202.210895090231 \tabularnewline
Minimum Sample Size (1 sided test) & 142.573078326854 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=87336&T=4

[TABLE]
[ROW][C]Minimum Sample Size(Infinite Population, Unknown Population Variance)[/C][/ROW]
[ROW][C]Population Size[/C][C]infinite[/C][/ROW]
[ROW][C]Margin of Error[/C][C]0.05[/C][/ROW]
[ROW][C]Confidence[/C][C]0.95[/C][/ROW]
[ROW][C]Power[/C][C]0.5[/C][/ROW]
[ROW][C]Population Variance[/C][C]unknown[/C][/ROW]
[ROW][C]t(alpha/2) + t(beta)[/C][C]1.97197136374429[/C][/ROW]
[ROW][C]t(alpha) + t(beta)[/C][C]1.65583512700514[/C][/ROW]
[ROW][C]Minimum Sample Size (2 sided test)[/C][C]202.210895090231[/C][/ROW]
[ROW][C]Minimum Sample Size (1 sided test)[/C][C]142.573078326854[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=87336&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=87336&T=4

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Minimum Sample Size(Infinite Population, Unknown Population Variance) Population Size infinite Margin of Error 0.05 Confidence 0.95 Power 0.5 Population Variance unknown t(alpha/2) + t(beta) 1.97197136374429 t(alpha) + t(beta) 1.65583512700514 Minimum Sample Size (2 sided test) 202.210895090231 Minimum Sample Size (1 sided test) 142.573078326854

par1 <- as.numeric(par1)par2 <- as.numeric(par2)par3 <- as.numeric(par3)par4 <- as.numeric(par4)par5 <- as.numeric(par5)(z <- abs(qnorm((1-par3)/2)) + abs(qnorm(1-par5)))(z1 <- abs(qnorm(1-par3)) + abs(qnorm(1-par5)))z2 <- z*zz2one <- z1*z1z24 <- z2 * par4z24one <- z2one * par4npop <- array(NA, 200)ppop <- array(NA, 200)for (i in 1:200){ppop[i] <- i * 100npop[i] <- ppop[i] * z24 / (z24 + (ppop[i] - 1) * par2*par2)}bitmap(file='pic1.png')plot(ppop,npop, xlab='population size', ylab='sample size (2 sided test)', main = paste('Confidence',par3))dumtext <- paste('Margin of error = ',par2)dumtext <- paste(dumtext,' Population Var. = ')dumtext <- paste(dumtext, par4)mtext(dumtext)grid()dev.off()par2sq <- par2 * par2num <- par1 * z24denom <- z24 + (par1 - 1) * par2sq(n <- num/denom)num1 <- par1 * z24onedenom1 <- z24one + (par1 - 1) * par2sq(n1 <- num1/denom1)load(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Size',header=TRUE)a<-table.element(a,par1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Margin of Error',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Confidence',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Power',header=TRUE)a<-table.element(a,par5)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Variance',header=TRUE)a<-table.element(a,par4)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)a<-table.element(a,z)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)a<-table.element(a,z1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)a<-table.element(a,n)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)a<-table.element(a,n1)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')(ni <- z24 / (par2sq))(ni1 <- z24one / (par2sq))a<-table.start()a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (for Infinite Populations)',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Size',header=TRUE)a<-table.element(a,'infinite')a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Margin of Error',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Confidence',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Power',header=TRUE)a<-table.element(a,par5)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Variance',header=TRUE)a<-table.element(a,par4)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)a<-table.element(a,z)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)a<-table.element(a,z1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)a<-table.element(a,ni)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)a<-table.element(a,ni1)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')(z <- abs(qt((1-par3)/2,n-1)) + abs(qt(1-par5,n-1)))(z1 <- abs(qt(1-par3,n1-1)) + abs(qt(1-par5,n1-1)))z2 <- z*zz2one <- z1*z1z24 <- z2 * par4z24one <- z2one * par4par2sq <- par2 * par2num <- par1 * z24denom <- z24 + (par1 - 1) * par2sq(n <- num/denom)num1 <- par1 * z24onedenom1 <- z24one + (par1 - 1) * par2sq(n1 <- num1/denom1)a<-table.start()a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (Unknown Population Variance)',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Size',header=TRUE)a<-table.element(a,par1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Margin of Error',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Confidence',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Power',header=TRUE)a<-table.element(a,par5)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Variance',header=TRUE)a<-table.element(a,'unknown')a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE)a<-table.element(a,z)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'t(alpha) + t(beta)',header=TRUE)a<-table.element(a,z1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)a<-table.element(a,n)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)a<-table.element(a,n1)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')(z <- abs(qt((1-par3)/2,ni-1)) + abs(qt(1-par5,ni-1)))(z1 <- abs(qt(1-par3,ni1-1)) + abs(qt(1-par5,ni1-1)))z2 <- z*zz2one <- z1*z1z24 <- z2 * par4z24one <- z2one * par4(ni <- z24 / (par2sq))(ni1 <- z24one / (par2sq))a<-table.start()a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size(Infinite Population, Unknown Population Variance)',2,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Size',header=TRUE)a<-table.element(a,'infinite')a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Margin of Error',header=TRUE)a<-table.element(a,par2)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Confidence',header=TRUE)a<-table.element(a,par3)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Power',header=TRUE)a<-table.element(a,par5)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Population Variance',header=TRUE)a<-table.element(a,'unknown')a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE)a<-table.element(a,z)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'t(alpha) + t(beta)',header=TRUE)a<-table.element(a,z1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)a<-table.element(a,ni)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)a<-table.element(a,ni1)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')