Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_linear_regression.wasp
Title produced by softwareLinear Regression Graphical Model Validation
Date of computationSun, 14 Nov 2010 15:45:15 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/14/t12897497155atpdoyrprjk3m0.htm/, Retrieved Fri, 26 Apr 2024 12:24:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=94572, Retrieved Fri, 26 Apr 2024 12:24:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact161
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Paired and Unpaired Two Samples Tests about the Mean] [WS 5 Question 3] [2010-11-01 07:38:26] [00b18f0d8e13a2047ccd266ce7bab24a]
F RMPD    [Linear Regression Graphical Model Validation] [WS 6 Tutorial Hyp...] [2010-11-14 15:45:15] [4d0f7ea43b071af5c75b527ee1ef14c2] [Current]
-    D      [Linear Regression Graphical Model Validation] [WS6 Tutorial Hypo...] [2010-11-16 19:46:58] [74be16979710d4c4e7c6647856088456]
F    D      [Linear Regression Graphical Model Validation] [WS6 Tutorial Hypo...] [2010-11-16 19:46:58] [8081b8996d5947580de3eb171e82db4f]
Feedback Forum
2010-11-21 08:44:52 [48eb36e2c01435ad7e4ea7854a9d98fe] [reply
We zien hier bij 'slope' inderdaad een positief getal. Dit zou kunnen wijzen op een positief verband tussen beiden. Zoals de student terecht heeft opgemerkt is de bijhorende P waarde zeer klein, dit betekent inderdaad dat we de nulhypothese (beta = 0) mogen verwerpen en de alternatieve hypothese (beta = 0,33) mogen aanvaarden.

Echter vooraleer men voorspellingen mag doen op basis van dit model, dient men eerst na te gaan of alle onderliggende assumpties zijn voldaan. Dit wordt naar mijn mening niet voldoende behandeld door de student. Zo is een van de voorwaarden dat er geen autocorrelatie mag zijn, hieraan besteed de student geen aandacht.

Voor de finale paper zou ik aanraden om hieraan meer aandacht te besteden en die onderliggende assumpties duidelijker te omschrijven. Daarnaast zou ik ook een duidelijkere definitie geven van de X variabele en de Y variabele.

Post a new message
Dataseries X:
5,3
5,6
3,8
4,0
4,0
3,6
4,4
3,6
4,0
3,8
5,1
6,7
5,1
4,0
3,3
2,7
4,7
3,3
4,4
6,9
6,0
7,6
4,7
6,9
4,2
3,6
4,4
4,7
4,9
3,8
5,3
5,6
5,8
5,6
3,8
7,1
7,3
2,9
7,1
5,6
6,4
4,9
4,0
3,8
4,4
3,3
4,4
7,3
6,4
5,1
5,8
4,0
4,4
2,4
6,2
5,8
4,9
3,8
2,7
3,1
3,8
4,7
4,2
4,0
2,2
6,4
6,9
4,2
2,0
4,4
6,2
4,2
6,7
6,4
5,8
5,1
2,9
4,7
4,2
6,2
5,1
4,0
4,7
4,4
5,1
4,7
4,7
3,3
6,2
4,2
5,8
2,2
3,6
4,9
4,2
6,9
6,9
6,4
4,2
4,9
5,1
3,3
4,4
4,0
5,1
5,6
4,7
5,3
5,6
3,8
2,9
6,2
4,7
5,6
2,0
3,6
4,2
3,8
5,6
4,4
6,4
3,1
4,9
3,3
4,2
4,4
3,3
4,4
4,0
7,3
4,9
3,6
3,8
3,6
4,7
5,8
4,0
4,0
3,8
4,9
6,7
6,7
5,3
4,7
4,7
6,4
6,9
4,4
3,6
4,9
4,4
6,2
8,4
4,9
4,4
3,8
6,2
4,9
6,9
Dataseries Y:
6,0
4,0
4,0
4,0
4,5
3,5
2,0
5,5
3,5
3,5
6,0
5,0
5,0
4,0
4,0
2,0
4,5
4,0
3,5
5,5
4,5
5,5
6,5
4,0
4,0
4,5
3,0
4,5
4,5
3,0
3,0
8,0
2,5
3,5
4,5
3,0
3,0
2,5
6,0
3,5
5,0
4,5
4,0
2,5
4,0
4,0
5,0
3,0
4,0
3,5
2,0
4,0
4,0
2,0
10,0
4,0
4,0
3,0
2,0
4,0
4,5
3,0
3,5
4,5
2,5
2,5
4,0
4,0
3,0
4,0
3,5
3,5
4,5
5,5
3,0
4,0
3,0
4,5
4,0
3,0
5,0
4,0
4,0
5,0
2,5
3,5
2,5
4,0
7,0
3,5
4,0
3,0
2,5
3,0
5,0
6,0
4,5
6,0
3,5
4,0
5,0
3,0
5,0
5,0
5,0
2,5
3,5
5,0
5,5
3,0
3,5
6,0
5,5
5,5
5,5
2,5
4,0
3,0
4,5
2,0
2,0
3,5
5,5
3,0
3,5
4,0
2,0
4,0
4,5
4,0
5,5
4,0
2,5
2,0
4,0
5,0
3,0
4,5
4,5
6,5
4,5
5,0
10,0
2,5
5,5
3,0
4,5
3,5
4,5
5,0
4,5
4,0
3,5
3,0
6,5
3,0
4,0
5,0
8,0




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94572&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94572&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94572&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term2.523144385976600.4009148007823636.293467791792252.96110469477640e-09
slope0.3315237904926840.08082044856000444.101979095631316.5595747021252e-05

\begin{tabular}{lllllllll}
\hline
Simple Linear Regression \tabularnewline
Statistics & Estimate & S.D. & T-STAT (H0: coeff=0) & P-value (two-sided) \tabularnewline
constant term & 2.52314438597660 & 0.400914800782363 & 6.29346779179225 & 2.96110469477640e-09 \tabularnewline
slope & 0.331523790492684 & 0.0808204485600044 & 4.10197909563131 & 6.5595747021252e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94572&T=1

[TABLE]
[ROW][C]Simple Linear Regression[/C][/ROW]
[ROW][C]Statistics[/C][C]Estimate[/C][C]S.D.[/C][C]T-STAT (H0: coeff=0)[/C][C]P-value (two-sided)[/C][/ROW]
[ROW][C]constant term[/C][C]2.52314438597660[/C][C]0.400914800782363[/C][C]6.29346779179225[/C][C]2.96110469477640e-09[/C][/ROW]
[ROW][C]slope[/C][C]0.331523790492684[/C][C]0.0808204485600044[/C][C]4.10197909563131[/C][C]6.5595747021252e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94572&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94572&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term2.523144385976600.4009148007823636.293467791792252.96110469477640e-09
slope0.3315237904926840.08082044856000444.101979095631316.5595747021252e-05



Parameters (Session):
par1 = 0 ;
Parameters (R input):
par1 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
library(lattice)
z <- as.data.frame(cbind(x,y))
m <- lm(y~x)
summary(m)
bitmap(file='test1.png')
plot(z,main='Scatterplot, lowess, and regression line')
lines(lowess(z),col='red')
abline(m)
grid()
dev.off()
bitmap(file='test2.png')
m2 <- lm(m$fitted.values ~ x)
summary(m2)
z2 <- as.data.frame(cbind(x,m$fitted.values))
names(z2) <- list('x','Fitted')
plot(z2,main='Scatterplot, lowess, and regression line')
lines(lowess(z2),col='red')
abline(m2)
grid()
dev.off()
bitmap(file='test3.png')
m3 <- lm(m$residuals ~ x)
summary(m3)
z3 <- as.data.frame(cbind(x,m$residuals))
names(z3) <- list('x','Residuals')
plot(z3,main='Scatterplot, lowess, and regression line')
lines(lowess(z3),col='red')
abline(m3)
grid()
dev.off()
bitmap(file='test4.png')
m4 <- lm(m$fitted.values ~ m$residuals)
summary(m4)
z4 <- as.data.frame(cbind(m$residuals,m$fitted.values))
names(z4) <- list('Residuals','Fitted')
plot(z4,main='Scatterplot, lowess, and regression line')
lines(lowess(z4),col='red')
abline(m4)
grid()
dev.off()
bitmap(file='test5.png')
myr <- as.ts(m$residuals)
z5 <- as.data.frame(cbind(lag(myr,1),myr))
names(z5) <- list('Lagged Residuals','Residuals')
plot(z5,main='Lag plot')
m5 <- lm(z5)
summary(m5)
abline(m5)
grid()
dev.off()
bitmap(file='test6.png')
hist(m$residuals,main='Residual Histogram',xlab='Residuals')
dev.off()
bitmap(file='test7.png')
if (par1 > 0)
{
densityplot(~m$residuals,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~m$residuals,col='black',main='Density Plot')
}
dev.off()
bitmap(file='test8.png')
acf(m$residuals,main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test9.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Simple Linear Regression',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistics',1,TRUE)
a<-table.element(a,'Estimate',1,TRUE)
a<-table.element(a,'S.D.',1,TRUE)
a<-table.element(a,'T-STAT (H0: coeff=0)',1,TRUE)
a<-table.element(a,'P-value (two-sided)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'constant term',header=TRUE)
a<-table.element(a,m$coefficients[[1]])
sd <- sqrt(vcov(m)[1,1])
a<-table.element(a,sd)
tstat <- m$coefficients[[1]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'slope',header=TRUE)
a<-table.element(a,m$coefficients[[2]])
sd <- sqrt(vcov(m)[2,2])
a<-table.element(a,sd)
tstat <- m$coefficients[[2]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')