## Free Statistics

of Irreproducible Research!

Author's title
Author*The author of this computation has been verified*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationFri, 12 Nov 2010 11:38:34 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/12/t1289561827392fn5qhea1u6kd.htm/, Retrieved Wed, 27 Sep 2023 09:18:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=94093, Retrieved Wed, 27 Sep 2023 09:18:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact142
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Bivariate Data Series] [Bivariate dataset] [2008-01-05 23:51:08] [74be16979710d4c4e7c6647856088456]
- RMPD  [Blocked Bootstrap Plot - Central Tendency] [Colombia Coffee] [2008-01-07 10:26:26] [74be16979710d4c4e7c6647856088456]
-  M D    [Blocked Bootstrap Plot - Central Tendency] [Retailprijs - Boo...] [2010-11-05 10:20:00] [aeb27d5c05332f2e597ad139ee63fbe4]
-    D        [Blocked Bootstrap Plot - Central Tendency] [Bootstrap Sim - V...] [2010-11-12 11:38:34] [18ef3d986e8801a4b28404e69e5bf56b] [Current]
Feedback Forum

Post a new message
Dataseries X:
43880
43110
44496
44164
40399
36763
37903
35532
35533
32110
33374
35462
33508
36080
34560
38737
38144
37594
36424
36843
37246
38661
40454
44928
48441
48140
45998
47369
49554
47510
44873
45344
42413
36912
43452
42142
44382
43636
44167
44423
42868
43908
42013
38846
35087
33026
34646
37135
37985
43121
43722
43630
42234
39351
39327
35704
30466
28155
29257
29998
32529
34787
33855
34556
31348
30805
28353
24514
21106
21346
23335
24379
26290
30084
29429
30632
27349
27264
27474
24482
21453
18788
19282
19713
21917
23812
23785
24696
24562
23580
24939
23899
21454
19761
19815
20780
23462
25005
24725
26198
27543
26471
26558
25317
22896
22248
23406
25073
27691
30599
31948
32946
34012
32936
32974
30951
29812
29010
31068
32447
34844
35676
35387
36488
35652
33488
32914
29781
27951

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 2 seconds R Server 'RServer@AstonUniversity' @ vre.aston.ac.uk

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'RServer@AstonUniversity' @ vre.aston.ac.uk \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94093&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'RServer@AstonUniversity' @ vre.aston.ac.uk[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94093&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94093&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 2 seconds R Server 'RServer@AstonUniversity' @ vre.aston.ac.uk

 Estimation Results of Blocked Bootstrap statistic Q1 Estimate Q3 S.D. IQR mean 31424.6201550388 33168.7596899225 34593.7209302326 2241.58511422364 3169.1007751938 median 30805 33026 35087 2820.66204928853 4282

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 31424.6201550388 & 33168.7596899225 & 34593.7209302326 & 2241.58511422364 & 3169.1007751938 \tabularnewline
median & 30805 & 33026 & 35087 & 2820.66204928853 & 4282 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94093&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]31424.6201550388[/C][C]33168.7596899225[/C][C]34593.7209302326[/C][C]2241.58511422364[/C][C]3169.1007751938[/C][/ROW]
[ROW][C]median[/C][C]30805[/C][C]33026[/C][C]35087[/C][C]2820.66204928853[/C][C]4282[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94093&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94093&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Estimation Results of Blocked Bootstrap statistic Q1 Estimate Q3 S.D. IQR mean 31424.6201550388 33168.7596899225 34593.7209302326 2241.58511422364 3169.1007751938 median 30805 33026 35087 2820.66204928853 4282

 95% Confidence Intervals Mean Median Lower Bound 32940.8787587096 32671.4349586829 Upper Bound 33390.3382955539 33276.5650413171

\begin{tabular}{lllllllll}
\hline
95% Confidence Intervals \tabularnewline
& Mean & Median \tabularnewline
Lower Bound & 32940.8787587096 & 32671.4349586829 \tabularnewline
Upper Bound & 33390.3382955539 & 33276.5650413171 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=94093&T=2

[TABLE]
[ROW][C]95% Confidence Intervals[/C][/ROW]
[ROW][C][/C][C]Mean[/C][C]Median[/C][/ROW]
[ROW][C]Lower Bound[/C][C]32940.8787587096[/C][C]32671.4349586829[/C][/ROW]
[ROW][C]Upper Bound[/C][C]33390.3382955539[/C][C]33276.5650413171[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=94093&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=94093&T=2

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 95% Confidence Intervals Mean Median Lower Bound 32940.8787587096 32671.4349586829 Upper Bound 33390.3382955539 33276.5650413171

par1 <- as.numeric(par1)par2 <- as.numeric(par2)if (par1 < 10) par1 = 10if (par1 > 5000) par1 = 5000if (par2 < 3) par2 = 3if (par2 > length(x)) par2 = length(x)library(lattice)library(boot)boot.stat <- function(s){s.mean <- mean(s)s.median <- median(s)c(s.mean, s.median)}(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))z <- data.frame(cbind(r$t[,1],r$t[,2]))colnames(z) <- list('mean','median')bitmap(file='plot7.png')b <- boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')grid()dev.off()bload(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'statistic',header=TRUE)a<-table.element(a,'Q1',header=TRUE)a<-table.element(a,'Estimate',header=TRUE)a<-table.element(a,'Q3',header=TRUE)a<-table.element(a,'S.D.',header=TRUE)a<-table.element(a,'IQR',header=TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'mean',header=TRUE)q1 <- quantile(r$t[,1],0.25)[[1]]q3 <- quantile(r$t[,1],0.75)[[1]]a<-table.element(a,q1)a<-table.element(a,r$t0[1])a<-table.element(a,q3)a<-table.element(a,sqrt(var(r$t[,1])))a<-table.element(a,q3-q1)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'median',header=TRUE)q1 <- quantile(r$t[,2],0.25)[[1]]q3 <- quantile(r$t[,2],0.75)[[1]]a<-table.element(a,q1)a<-table.element(a,r$t0[2])a<-table.element(a,q3)a<-table.element(a,sqrt(var(r$t[,2])))a<-table.element(a,q3-q1)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')a<-table.start()a<-table.row.start(a)a<-table.element(a,'95% Confidence Intervals',3,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'',1,TRUE)a<-table.element(a,'Mean',1,TRUE)a<-table.element(a,'Median',1,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Lower Bound',1,TRUE)a<-table.element(a,b$conf[1,1])a<-table.element(a,b$conf[1,2])a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Upper Bound',1,TRUE)a<-table.element(a,b$conf[2,1])a<-table.element(a,b$conf[2,2])a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable1.tab')