Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationMon, 03 May 2010 18:11:43 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/May/03/t127291033982amavlniinfi6e.htm/, Retrieved Fri, 27 May 2022 02:32:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=75283, Retrieved Fri, 27 May 2022 02:32:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W21
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Histogram] [Datareeks-Inschri...] [2010-02-08 14:03:15] [c656187b38b4f6e6948d94f8dfe6ded2]
- RMP   [Harrell-Davis Quantiles] [Datareeks-Opdrach...] [2010-03-08 17:35:01] [1f3241a8f2363a866734862cbbf73252]
- RMPD    [Mean Plot] [Opgave 6 oefening...] [2010-04-26 21:57:04] [1f3241a8f2363a866734862cbbf73252]
- RMPD      [(Partial) Autocorrelation Function] [Opgave 6 BIS oefe...] [2010-05-03 18:06:05] [1f3241a8f2363a866734862cbbf73252]
-   P           [(Partial) Autocorrelation Function] [Opgave 6 BIS oefe...] [2010-05-03 18:11:43] [8c87877ca0a068b5d9f0f8fa9cf6c0e7] [Current]
Feedback Forum

Post a new message
Dataseries X:
41086
39690
43129
37863
35953
29133
24693
22205
21725
27192
21790
13253
37702
30364
32609
30212
29965
28352
25814
22414
20506
28806
22228
13971
36845
35338
35022
34777
26887
23970
22780
17351
21382
24561
17409
11514
31514
27071
29462
26105
22397
23843
21705
18089
20764
25316
17704
15548
28029
29383
36438
32034
22679
24319
18004
17537
20366
22782
19169
13807
29743
25591
29096
26482
22405
27044
17970
18730
19684
19785
18479
10698
31956
29506
34506
27165
26736
23691
18157
17328
18205
20995
17382
9367
31124
26551
30651
25859
25100
25778
20418
18688
20424
24776
19814
12738
31566
30111
30019
31934
25826
26835
20205
17789
20520
22518
15572
11509
25447
24090
27786
26195
20516
22759
19028
16971
20036
22485
18730
14538




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=75283&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=75283&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=75283&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4700685.14931e-06
20.2634492.88590.002314
30.1373931.50510.067467
4-0.048318-0.52930.298789
5-0.149293-1.63540.052291
6-0.277304-3.03770.001463
7-0.193611-2.12090.017994
8-0.097985-1.07340.14263
90.0286970.31440.376897
100.0930561.01940.155036
110.2722212.9820.001734
120.726297.95610
130.2932463.21230.000845
140.1368231.49880.068274
150.0467420.5120.304785
16-0.110833-1.21410.113543
17-0.160419-1.75730.040708
18-0.293747-3.21780.000831
19-0.216268-2.36910.009714
20-0.110613-1.21170.114002
21-0.006654-0.07290.471008
220.0788080.86330.194847
230.2802763.07030.001323
240.6628577.26120
250.3025623.31440.000607
260.1437361.57460.058996
270.0259950.28480.388158
28-0.122311-1.33990.091412
29-0.164519-1.80220.037011
30-0.301616-3.3040.000628
31-0.217792-2.38580.009303
32-0.137046-1.50130.067958
33-0.075043-0.82210.206337
340.0088060.09650.461657
350.1569571.71940.044062
360.4793215.25070
370.1915312.09810.018996
380.0710240.7780.219042
39-0.019209-0.21040.416849
40-0.125756-1.37760.085448
41-0.161178-1.76560.040002
42-0.272441-2.98440.001722
43-0.190947-2.09170.019286
44-0.13345-1.46190.073195
45-0.071293-0.7810.218179
460.0297290.32570.372623
470.1602041.75490.04091
480.4575715.01241e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.470068 & 5.1493 & 1e-06 \tabularnewline
2 & 0.263449 & 2.8859 & 0.002314 \tabularnewline
3 & 0.137393 & 1.5051 & 0.067467 \tabularnewline
4 & -0.048318 & -0.5293 & 0.298789 \tabularnewline
5 & -0.149293 & -1.6354 & 0.052291 \tabularnewline
6 & -0.277304 & -3.0377 & 0.001463 \tabularnewline
7 & -0.193611 & -2.1209 & 0.017994 \tabularnewline
8 & -0.097985 & -1.0734 & 0.14263 \tabularnewline
9 & 0.028697 & 0.3144 & 0.376897 \tabularnewline
10 & 0.093056 & 1.0194 & 0.155036 \tabularnewline
11 & 0.272221 & 2.982 & 0.001734 \tabularnewline
12 & 0.72629 & 7.9561 & 0 \tabularnewline
13 & 0.293246 & 3.2123 & 0.000845 \tabularnewline
14 & 0.136823 & 1.4988 & 0.068274 \tabularnewline
15 & 0.046742 & 0.512 & 0.304785 \tabularnewline
16 & -0.110833 & -1.2141 & 0.113543 \tabularnewline
17 & -0.160419 & -1.7573 & 0.040708 \tabularnewline
18 & -0.293747 & -3.2178 & 0.000831 \tabularnewline
19 & -0.216268 & -2.3691 & 0.009714 \tabularnewline
20 & -0.110613 & -1.2117 & 0.114002 \tabularnewline
21 & -0.006654 & -0.0729 & 0.471008 \tabularnewline
22 & 0.078808 & 0.8633 & 0.194847 \tabularnewline
23 & 0.280276 & 3.0703 & 0.001323 \tabularnewline
24 & 0.662857 & 7.2612 & 0 \tabularnewline
25 & 0.302562 & 3.3144 & 0.000607 \tabularnewline
26 & 0.143736 & 1.5746 & 0.058996 \tabularnewline
27 & 0.025995 & 0.2848 & 0.388158 \tabularnewline
28 & -0.122311 & -1.3399 & 0.091412 \tabularnewline
29 & -0.164519 & -1.8022 & 0.037011 \tabularnewline
30 & -0.301616 & -3.304 & 0.000628 \tabularnewline
31 & -0.217792 & -2.3858 & 0.009303 \tabularnewline
32 & -0.137046 & -1.5013 & 0.067958 \tabularnewline
33 & -0.075043 & -0.8221 & 0.206337 \tabularnewline
34 & 0.008806 & 0.0965 & 0.461657 \tabularnewline
35 & 0.156957 & 1.7194 & 0.044062 \tabularnewline
36 & 0.479321 & 5.2507 & 0 \tabularnewline
37 & 0.191531 & 2.0981 & 0.018996 \tabularnewline
38 & 0.071024 & 0.778 & 0.219042 \tabularnewline
39 & -0.019209 & -0.2104 & 0.416849 \tabularnewline
40 & -0.125756 & -1.3776 & 0.085448 \tabularnewline
41 & -0.161178 & -1.7656 & 0.040002 \tabularnewline
42 & -0.272441 & -2.9844 & 0.001722 \tabularnewline
43 & -0.190947 & -2.0917 & 0.019286 \tabularnewline
44 & -0.13345 & -1.4619 & 0.073195 \tabularnewline
45 & -0.071293 & -0.781 & 0.218179 \tabularnewline
46 & 0.029729 & 0.3257 & 0.372623 \tabularnewline
47 & 0.160204 & 1.7549 & 0.04091 \tabularnewline
48 & 0.457571 & 5.0124 & 1e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=75283&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.470068[/C][C]5.1493[/C][C]1e-06[/C][/ROW]
[ROW][C]2[/C][C]0.263449[/C][C]2.8859[/C][C]0.002314[/C][/ROW]
[ROW][C]3[/C][C]0.137393[/C][C]1.5051[/C][C]0.067467[/C][/ROW]
[ROW][C]4[/C][C]-0.048318[/C][C]-0.5293[/C][C]0.298789[/C][/ROW]
[ROW][C]5[/C][C]-0.149293[/C][C]-1.6354[/C][C]0.052291[/C][/ROW]
[ROW][C]6[/C][C]-0.277304[/C][C]-3.0377[/C][C]0.001463[/C][/ROW]
[ROW][C]7[/C][C]-0.193611[/C][C]-2.1209[/C][C]0.017994[/C][/ROW]
[ROW][C]8[/C][C]-0.097985[/C][C]-1.0734[/C][C]0.14263[/C][/ROW]
[ROW][C]9[/C][C]0.028697[/C][C]0.3144[/C][C]0.376897[/C][/ROW]
[ROW][C]10[/C][C]0.093056[/C][C]1.0194[/C][C]0.155036[/C][/ROW]
[ROW][C]11[/C][C]0.272221[/C][C]2.982[/C][C]0.001734[/C][/ROW]
[ROW][C]12[/C][C]0.72629[/C][C]7.9561[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.293246[/C][C]3.2123[/C][C]0.000845[/C][/ROW]
[ROW][C]14[/C][C]0.136823[/C][C]1.4988[/C][C]0.068274[/C][/ROW]
[ROW][C]15[/C][C]0.046742[/C][C]0.512[/C][C]0.304785[/C][/ROW]
[ROW][C]16[/C][C]-0.110833[/C][C]-1.2141[/C][C]0.113543[/C][/ROW]
[ROW][C]17[/C][C]-0.160419[/C][C]-1.7573[/C][C]0.040708[/C][/ROW]
[ROW][C]18[/C][C]-0.293747[/C][C]-3.2178[/C][C]0.000831[/C][/ROW]
[ROW][C]19[/C][C]-0.216268[/C][C]-2.3691[/C][C]0.009714[/C][/ROW]
[ROW][C]20[/C][C]-0.110613[/C][C]-1.2117[/C][C]0.114002[/C][/ROW]
[ROW][C]21[/C][C]-0.006654[/C][C]-0.0729[/C][C]0.471008[/C][/ROW]
[ROW][C]22[/C][C]0.078808[/C][C]0.8633[/C][C]0.194847[/C][/ROW]
[ROW][C]23[/C][C]0.280276[/C][C]3.0703[/C][C]0.001323[/C][/ROW]
[ROW][C]24[/C][C]0.662857[/C][C]7.2612[/C][C]0[/C][/ROW]
[ROW][C]25[/C][C]0.302562[/C][C]3.3144[/C][C]0.000607[/C][/ROW]
[ROW][C]26[/C][C]0.143736[/C][C]1.5746[/C][C]0.058996[/C][/ROW]
[ROW][C]27[/C][C]0.025995[/C][C]0.2848[/C][C]0.388158[/C][/ROW]
[ROW][C]28[/C][C]-0.122311[/C][C]-1.3399[/C][C]0.091412[/C][/ROW]
[ROW][C]29[/C][C]-0.164519[/C][C]-1.8022[/C][C]0.037011[/C][/ROW]
[ROW][C]30[/C][C]-0.301616[/C][C]-3.304[/C][C]0.000628[/C][/ROW]
[ROW][C]31[/C][C]-0.217792[/C][C]-2.3858[/C][C]0.009303[/C][/ROW]
[ROW][C]32[/C][C]-0.137046[/C][C]-1.5013[/C][C]0.067958[/C][/ROW]
[ROW][C]33[/C][C]-0.075043[/C][C]-0.8221[/C][C]0.206337[/C][/ROW]
[ROW][C]34[/C][C]0.008806[/C][C]0.0965[/C][C]0.461657[/C][/ROW]
[ROW][C]35[/C][C]0.156957[/C][C]1.7194[/C][C]0.044062[/C][/ROW]
[ROW][C]36[/C][C]0.479321[/C][C]5.2507[/C][C]0[/C][/ROW]
[ROW][C]37[/C][C]0.191531[/C][C]2.0981[/C][C]0.018996[/C][/ROW]
[ROW][C]38[/C][C]0.071024[/C][C]0.778[/C][C]0.219042[/C][/ROW]
[ROW][C]39[/C][C]-0.019209[/C][C]-0.2104[/C][C]0.416849[/C][/ROW]
[ROW][C]40[/C][C]-0.125756[/C][C]-1.3776[/C][C]0.085448[/C][/ROW]
[ROW][C]41[/C][C]-0.161178[/C][C]-1.7656[/C][C]0.040002[/C][/ROW]
[ROW][C]42[/C][C]-0.272441[/C][C]-2.9844[/C][C]0.001722[/C][/ROW]
[ROW][C]43[/C][C]-0.190947[/C][C]-2.0917[/C][C]0.019286[/C][/ROW]
[ROW][C]44[/C][C]-0.13345[/C][C]-1.4619[/C][C]0.073195[/C][/ROW]
[ROW][C]45[/C][C]-0.071293[/C][C]-0.781[/C][C]0.218179[/C][/ROW]
[ROW][C]46[/C][C]0.029729[/C][C]0.3257[/C][C]0.372623[/C][/ROW]
[ROW][C]47[/C][C]0.160204[/C][C]1.7549[/C][C]0.04091[/C][/ROW]
[ROW][C]48[/C][C]0.457571[/C][C]5.0124[/C][C]1e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=75283&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=75283&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4700685.14931e-06
20.2634492.88590.002314
30.1373931.50510.067467
4-0.048318-0.52930.298789
5-0.149293-1.63540.052291
6-0.277304-3.03770.001463
7-0.193611-2.12090.017994
8-0.097985-1.07340.14263
90.0286970.31440.376897
100.0930561.01940.155036
110.2722212.9820.001734
120.726297.95610
130.2932463.21230.000845
140.1368231.49880.068274
150.0467420.5120.304785
16-0.110833-1.21410.113543
17-0.160419-1.75730.040708
18-0.293747-3.21780.000831
19-0.216268-2.36910.009714
20-0.110613-1.21170.114002
21-0.006654-0.07290.471008
220.0788080.86330.194847
230.2802763.07030.001323
240.6628577.26120
250.3025623.31440.000607
260.1437361.57460.058996
270.0259950.28480.388158
28-0.122311-1.33990.091412
29-0.164519-1.80220.037011
30-0.301616-3.3040.000628
31-0.217792-2.38580.009303
32-0.137046-1.50130.067958
33-0.075043-0.82210.206337
340.0088060.09650.461657
350.1569571.71940.044062
360.4793215.25070
370.1915312.09810.018996
380.0710240.7780.219042
39-0.019209-0.21040.416849
40-0.125756-1.37760.085448
41-0.161178-1.76560.040002
42-0.272441-2.98440.001722
43-0.190947-2.09170.019286
44-0.13345-1.46190.073195
45-0.071293-0.7810.218179
460.0297290.32570.372623
470.1602041.75490.04091
480.4575715.01241e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4700685.14931e-06
20.0545350.59740.275681
3-0.006859-0.07510.470116
4-0.156277-1.71190.044747
5-0.105641-1.15720.124737
6-0.188293-2.06270.020652
70.0546360.59850.275316
80.0552190.60490.273196
90.1200161.31470.095557
100.0132810.14550.442285
110.2143162.34770.010263
120.6738967.38220
13-0.565816-6.19820
14-0.140631-1.54050.063031
150.0551790.60450.27334
160.0337310.36950.356202
170.0241520.26460.395895
18-0.041503-0.45460.325095
190.0120370.13190.447658
20-0.004244-0.04650.481497
210.0521110.57080.284586
220.2252332.46730.007512
230.1459161.59840.056289
24-0.096455-1.05660.146407
25-0.046034-0.50430.307496
26-0.074444-0.81550.208204
27-0.093463-1.02380.153986
280.0719950.78870.215931
290.0010540.01160.495402
300.0115610.12660.449716
310.0250620.27450.392071
32-0.118795-1.30130.097819
33-0.025539-0.27980.390071
340.0255290.27970.390113
35-0.205654-2.25280.013044
360.0149280.16350.435189
370.0067020.07340.4708
380.0575950.63090.264646
390.0588960.64520.260023
40-0.027087-0.29670.383595
41-0.056223-0.61590.269566
420.0665860.72940.233585
43-0.063519-0.69580.243945
440.0207880.22770.410127
450.0780970.85550.196988
46-0.066364-0.7270.234326
470.0433750.47520.317771
480.0634010.69450.244347

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.470068 & 5.1493 & 1e-06 \tabularnewline
2 & 0.054535 & 0.5974 & 0.275681 \tabularnewline
3 & -0.006859 & -0.0751 & 0.470116 \tabularnewline
4 & -0.156277 & -1.7119 & 0.044747 \tabularnewline
5 & -0.105641 & -1.1572 & 0.124737 \tabularnewline
6 & -0.188293 & -2.0627 & 0.020652 \tabularnewline
7 & 0.054636 & 0.5985 & 0.275316 \tabularnewline
8 & 0.055219 & 0.6049 & 0.273196 \tabularnewline
9 & 0.120016 & 1.3147 & 0.095557 \tabularnewline
10 & 0.013281 & 0.1455 & 0.442285 \tabularnewline
11 & 0.214316 & 2.3477 & 0.010263 \tabularnewline
12 & 0.673896 & 7.3822 & 0 \tabularnewline
13 & -0.565816 & -6.1982 & 0 \tabularnewline
14 & -0.140631 & -1.5405 & 0.063031 \tabularnewline
15 & 0.055179 & 0.6045 & 0.27334 \tabularnewline
16 & 0.033731 & 0.3695 & 0.356202 \tabularnewline
17 & 0.024152 & 0.2646 & 0.395895 \tabularnewline
18 & -0.041503 & -0.4546 & 0.325095 \tabularnewline
19 & 0.012037 & 0.1319 & 0.447658 \tabularnewline
20 & -0.004244 & -0.0465 & 0.481497 \tabularnewline
21 & 0.052111 & 0.5708 & 0.284586 \tabularnewline
22 & 0.225233 & 2.4673 & 0.007512 \tabularnewline
23 & 0.145916 & 1.5984 & 0.056289 \tabularnewline
24 & -0.096455 & -1.0566 & 0.146407 \tabularnewline
25 & -0.046034 & -0.5043 & 0.307496 \tabularnewline
26 & -0.074444 & -0.8155 & 0.208204 \tabularnewline
27 & -0.093463 & -1.0238 & 0.153986 \tabularnewline
28 & 0.071995 & 0.7887 & 0.215931 \tabularnewline
29 & 0.001054 & 0.0116 & 0.495402 \tabularnewline
30 & 0.011561 & 0.1266 & 0.449716 \tabularnewline
31 & 0.025062 & 0.2745 & 0.392071 \tabularnewline
32 & -0.118795 & -1.3013 & 0.097819 \tabularnewline
33 & -0.025539 & -0.2798 & 0.390071 \tabularnewline
34 & 0.025529 & 0.2797 & 0.390113 \tabularnewline
35 & -0.205654 & -2.2528 & 0.013044 \tabularnewline
36 & 0.014928 & 0.1635 & 0.435189 \tabularnewline
37 & 0.006702 & 0.0734 & 0.4708 \tabularnewline
38 & 0.057595 & 0.6309 & 0.264646 \tabularnewline
39 & 0.058896 & 0.6452 & 0.260023 \tabularnewline
40 & -0.027087 & -0.2967 & 0.383595 \tabularnewline
41 & -0.056223 & -0.6159 & 0.269566 \tabularnewline
42 & 0.066586 & 0.7294 & 0.233585 \tabularnewline
43 & -0.063519 & -0.6958 & 0.243945 \tabularnewline
44 & 0.020788 & 0.2277 & 0.410127 \tabularnewline
45 & 0.078097 & 0.8555 & 0.196988 \tabularnewline
46 & -0.066364 & -0.727 & 0.234326 \tabularnewline
47 & 0.043375 & 0.4752 & 0.317771 \tabularnewline
48 & 0.063401 & 0.6945 & 0.244347 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=75283&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.470068[/C][C]5.1493[/C][C]1e-06[/C][/ROW]
[ROW][C]2[/C][C]0.054535[/C][C]0.5974[/C][C]0.275681[/C][/ROW]
[ROW][C]3[/C][C]-0.006859[/C][C]-0.0751[/C][C]0.470116[/C][/ROW]
[ROW][C]4[/C][C]-0.156277[/C][C]-1.7119[/C][C]0.044747[/C][/ROW]
[ROW][C]5[/C][C]-0.105641[/C][C]-1.1572[/C][C]0.124737[/C][/ROW]
[ROW][C]6[/C][C]-0.188293[/C][C]-2.0627[/C][C]0.020652[/C][/ROW]
[ROW][C]7[/C][C]0.054636[/C][C]0.5985[/C][C]0.275316[/C][/ROW]
[ROW][C]8[/C][C]0.055219[/C][C]0.6049[/C][C]0.273196[/C][/ROW]
[ROW][C]9[/C][C]0.120016[/C][C]1.3147[/C][C]0.095557[/C][/ROW]
[ROW][C]10[/C][C]0.013281[/C][C]0.1455[/C][C]0.442285[/C][/ROW]
[ROW][C]11[/C][C]0.214316[/C][C]2.3477[/C][C]0.010263[/C][/ROW]
[ROW][C]12[/C][C]0.673896[/C][C]7.3822[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]-0.565816[/C][C]-6.1982[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]-0.140631[/C][C]-1.5405[/C][C]0.063031[/C][/ROW]
[ROW][C]15[/C][C]0.055179[/C][C]0.6045[/C][C]0.27334[/C][/ROW]
[ROW][C]16[/C][C]0.033731[/C][C]0.3695[/C][C]0.356202[/C][/ROW]
[ROW][C]17[/C][C]0.024152[/C][C]0.2646[/C][C]0.395895[/C][/ROW]
[ROW][C]18[/C][C]-0.041503[/C][C]-0.4546[/C][C]0.325095[/C][/ROW]
[ROW][C]19[/C][C]0.012037[/C][C]0.1319[/C][C]0.447658[/C][/ROW]
[ROW][C]20[/C][C]-0.004244[/C][C]-0.0465[/C][C]0.481497[/C][/ROW]
[ROW][C]21[/C][C]0.052111[/C][C]0.5708[/C][C]0.284586[/C][/ROW]
[ROW][C]22[/C][C]0.225233[/C][C]2.4673[/C][C]0.007512[/C][/ROW]
[ROW][C]23[/C][C]0.145916[/C][C]1.5984[/C][C]0.056289[/C][/ROW]
[ROW][C]24[/C][C]-0.096455[/C][C]-1.0566[/C][C]0.146407[/C][/ROW]
[ROW][C]25[/C][C]-0.046034[/C][C]-0.5043[/C][C]0.307496[/C][/ROW]
[ROW][C]26[/C][C]-0.074444[/C][C]-0.8155[/C][C]0.208204[/C][/ROW]
[ROW][C]27[/C][C]-0.093463[/C][C]-1.0238[/C][C]0.153986[/C][/ROW]
[ROW][C]28[/C][C]0.071995[/C][C]0.7887[/C][C]0.215931[/C][/ROW]
[ROW][C]29[/C][C]0.001054[/C][C]0.0116[/C][C]0.495402[/C][/ROW]
[ROW][C]30[/C][C]0.011561[/C][C]0.1266[/C][C]0.449716[/C][/ROW]
[ROW][C]31[/C][C]0.025062[/C][C]0.2745[/C][C]0.392071[/C][/ROW]
[ROW][C]32[/C][C]-0.118795[/C][C]-1.3013[/C][C]0.097819[/C][/ROW]
[ROW][C]33[/C][C]-0.025539[/C][C]-0.2798[/C][C]0.390071[/C][/ROW]
[ROW][C]34[/C][C]0.025529[/C][C]0.2797[/C][C]0.390113[/C][/ROW]
[ROW][C]35[/C][C]-0.205654[/C][C]-2.2528[/C][C]0.013044[/C][/ROW]
[ROW][C]36[/C][C]0.014928[/C][C]0.1635[/C][C]0.435189[/C][/ROW]
[ROW][C]37[/C][C]0.006702[/C][C]0.0734[/C][C]0.4708[/C][/ROW]
[ROW][C]38[/C][C]0.057595[/C][C]0.6309[/C][C]0.264646[/C][/ROW]
[ROW][C]39[/C][C]0.058896[/C][C]0.6452[/C][C]0.260023[/C][/ROW]
[ROW][C]40[/C][C]-0.027087[/C][C]-0.2967[/C][C]0.383595[/C][/ROW]
[ROW][C]41[/C][C]-0.056223[/C][C]-0.6159[/C][C]0.269566[/C][/ROW]
[ROW][C]42[/C][C]0.066586[/C][C]0.7294[/C][C]0.233585[/C][/ROW]
[ROW][C]43[/C][C]-0.063519[/C][C]-0.6958[/C][C]0.243945[/C][/ROW]
[ROW][C]44[/C][C]0.020788[/C][C]0.2277[/C][C]0.410127[/C][/ROW]
[ROW][C]45[/C][C]0.078097[/C][C]0.8555[/C][C]0.196988[/C][/ROW]
[ROW][C]46[/C][C]-0.066364[/C][C]-0.727[/C][C]0.234326[/C][/ROW]
[ROW][C]47[/C][C]0.043375[/C][C]0.4752[/C][C]0.317771[/C][/ROW]
[ROW][C]48[/C][C]0.063401[/C][C]0.6945[/C][C]0.244347[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=75283&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=75283&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4700685.14931e-06
20.0545350.59740.275681
3-0.006859-0.07510.470116
4-0.156277-1.71190.044747
5-0.105641-1.15720.124737
6-0.188293-2.06270.020652
70.0546360.59850.275316
80.0552190.60490.273196
90.1200161.31470.095557
100.0132810.14550.442285
110.2143162.34770.010263
120.6738967.38220
13-0.565816-6.19820
14-0.140631-1.54050.063031
150.0551790.60450.27334
160.0337310.36950.356202
170.0241520.26460.395895
18-0.041503-0.45460.325095
190.0120370.13190.447658
20-0.004244-0.04650.481497
210.0521110.57080.284586
220.2252332.46730.007512
230.1459161.59840.056289
24-0.096455-1.05660.146407
25-0.046034-0.50430.307496
26-0.074444-0.81550.208204
27-0.093463-1.02380.153986
280.0719950.78870.215931
290.0010540.01160.495402
300.0115610.12660.449716
310.0250620.27450.392071
32-0.118795-1.30130.097819
33-0.025539-0.27980.390071
340.0255290.27970.390113
35-0.205654-2.25280.013044
360.0149280.16350.435189
370.0067020.07340.4708
380.0575950.63090.264646
390.0588960.64520.260023
40-0.027087-0.29670.383595
41-0.056223-0.61590.269566
420.0665860.72940.233585
43-0.063519-0.69580.243945
440.0207880.22770.410127
450.0780970.85550.196988
46-0.066364-0.7270.234326
470.0433750.47520.317771
480.0634010.69450.244347



Parameters (Session):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep=''))
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF')
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,hyperlink('basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')