Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 30 Nov 2009 11:43:43 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/30/t1259606725nihbwi18a3fj0kj.htm/, Retrieved Wed, 11 Sep 2024 07:19:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=61852, Retrieved Wed, 11 Sep 2024 07:19:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact201
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Q1 The Seatbeltlaw] [2007-11-14 19:27:43] [8cd6641b921d30ebe00b648d1481bba0]
- RMPD  [Multiple Regression] [Seatbelt] [2009-11-12 14:03:14] [b98453cac15ba1066b407e146608df68]
- R  D    [Multiple Regression] [] [2009-11-24 08:40:29] [74be16979710d4c4e7c6647856088456]
-    D      [Multiple Regression] [] [2009-11-30 18:23:57] [74be16979710d4c4e7c6647856088456]
-   P           [Multiple Regression] [] [2009-11-30 18:43:43] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum

Post a new message
Dataseries X:
267413	294912
267366	293488
264777	290555
258863	284736
254844	281818
254868	287854
277267	316263
285351	325412
286602	326011
283042	328282
276687	317480
277915	317539
277128	313737
277103	312276
275037	309391
270150	302950
267140	300316
264993	304035
287259	333476
291186	337698
292300	335932
288186	323931
281477	313927
282656	314485
280190	313218
280408	309664
276836	302963
275216	298989
274352	298423
271311	301631
289802	329765
290726	335083
292300	327616
278506	309119
269826	295916
265861	291413
269034	291542
264176	284678
255198	276475
253353	272566
246057	264981
235372	263290
258556	296806
260993	303598
254663	286994
250643	276427
243422	266424
247105	267153
248541	268381
245039	262522
237080	255542
237085	253158
225554	243803
226839	250741
247934	280445
248333	285257
246969	270976
245098	261076
246263	255603
255765	260376
264319	263903
268347	264291
273046	263276
273963	262572
267430	256167
271993	264221
292710	293860




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Multiple Linear Regression - Estimated Regression Equation
Y[t] = -19851.0732190765 + 0.927997599540739X[t] + 3488.77411053802M1[t] + 5238.89859350010M2[t] + 5813.70309850114M3[t] + 6726.8417983221M4[t] + 5285.69400486605M5[t] -899.207493524473M6[t] -7657.43328196939M7[t] -13975.7005108038M8[t] -7847.9064228879M9[t] -4738.03673981474M10[t] -1569.55783649424M11[t] + 455.91333933419t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Y[t] =  -19851.0732190765 +  0.927997599540739X[t] +  3488.77411053802M1[t] +  5238.89859350010M2[t] +  5813.70309850114M3[t] +  6726.8417983221M4[t] +  5285.69400486605M5[t] -899.207493524473M6[t] -7657.43328196939M7[t] -13975.7005108038M8[t] -7847.9064228879M9[t] -4738.03673981474M10[t] -1569.55783649424M11[t] +  455.91333933419t  + e[t] \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Y[t] =  -19851.0732190765 +  0.927997599540739X[t] +  3488.77411053802M1[t] +  5238.89859350010M2[t] +  5813.70309850114M3[t] +  6726.8417983221M4[t] +  5285.69400486605M5[t] -899.207493524473M6[t] -7657.43328196939M7[t] -13975.7005108038M8[t] -7847.9064228879M9[t] -4738.03673981474M10[t] -1569.55783649424M11[t] +  455.91333933419t  + e[t][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Y[t] = -19851.0732190765 + 0.927997599540739X[t] + 3488.77411053802M1[t] + 5238.89859350010M2[t] + 5813.70309850114M3[t] + 6726.8417983221M4[t] + 5285.69400486605M5[t] -899.207493524473M6[t] -7657.43328196939M7[t] -13975.7005108038M8[t] -7847.9064228879M9[t] -4738.03673981474M10[t] -1569.55783649424M11[t] + 455.91333933419t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-19851.073219076524988.342126-0.79440.4304980.215249
X0.9279975995407390.07641112.144800
M13488.774110538024731.1571470.73740.4641290.232064
M25238.898593500104742.2580341.10470.2742680.137134
M35813.703098501144778.2741741.21670.2291110.114555
M46726.84179832214817.9769521.39620.1684760.084238
M55285.694004866054888.6857931.08120.2844990.14225
M6-899.2074935244734797.847171-0.18740.8520480.426024
M7-7657.433281969394937.908632-1.55070.1269140.063457
M8-13975.70051080385248.174096-2.6630.0102350.005117
M9-7847.90642288795087.925466-1.54250.1289130.064456
M10-4738.036739814744961.929918-0.95490.3439750.171987
M11-1569.557836494244926.611899-0.31860.7512910.375646
t455.9133393341985.3762675.342e-061e-06

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -19851.0732190765 & 24988.342126 & -0.7944 & 0.430498 & 0.215249 \tabularnewline
X & 0.927997599540739 & 0.076411 & 12.1448 & 0 & 0 \tabularnewline
M1 & 3488.77411053802 & 4731.157147 & 0.7374 & 0.464129 & 0.232064 \tabularnewline
M2 & 5238.89859350010 & 4742.258034 & 1.1047 & 0.274268 & 0.137134 \tabularnewline
M3 & 5813.70309850114 & 4778.274174 & 1.2167 & 0.229111 & 0.114555 \tabularnewline
M4 & 6726.8417983221 & 4817.976952 & 1.3962 & 0.168476 & 0.084238 \tabularnewline
M5 & 5285.69400486605 & 4888.685793 & 1.0812 & 0.284499 & 0.14225 \tabularnewline
M6 & -899.207493524473 & 4797.847171 & -0.1874 & 0.852048 & 0.426024 \tabularnewline
M7 & -7657.43328196939 & 4937.908632 & -1.5507 & 0.126914 & 0.063457 \tabularnewline
M8 & -13975.7005108038 & 5248.174096 & -2.663 & 0.010235 & 0.005117 \tabularnewline
M9 & -7847.9064228879 & 5087.925466 & -1.5425 & 0.128913 & 0.064456 \tabularnewline
M10 & -4738.03673981474 & 4961.929918 & -0.9549 & 0.343975 & 0.171987 \tabularnewline
M11 & -1569.55783649424 & 4926.611899 & -0.3186 & 0.751291 & 0.375646 \tabularnewline
t & 455.91333933419 & 85.376267 & 5.34 & 2e-06 & 1e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-19851.0732190765[/C][C]24988.342126[/C][C]-0.7944[/C][C]0.430498[/C][C]0.215249[/C][/ROW]
[ROW][C]X[/C][C]0.927997599540739[/C][C]0.076411[/C][C]12.1448[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]M1[/C][C]3488.77411053802[/C][C]4731.157147[/C][C]0.7374[/C][C]0.464129[/C][C]0.232064[/C][/ROW]
[ROW][C]M2[/C][C]5238.89859350010[/C][C]4742.258034[/C][C]1.1047[/C][C]0.274268[/C][C]0.137134[/C][/ROW]
[ROW][C]M3[/C][C]5813.70309850114[/C][C]4778.274174[/C][C]1.2167[/C][C]0.229111[/C][C]0.114555[/C][/ROW]
[ROW][C]M4[/C][C]6726.8417983221[/C][C]4817.976952[/C][C]1.3962[/C][C]0.168476[/C][C]0.084238[/C][/ROW]
[ROW][C]M5[/C][C]5285.69400486605[/C][C]4888.685793[/C][C]1.0812[/C][C]0.284499[/C][C]0.14225[/C][/ROW]
[ROW][C]M6[/C][C]-899.207493524473[/C][C]4797.847171[/C][C]-0.1874[/C][C]0.852048[/C][C]0.426024[/C][/ROW]
[ROW][C]M7[/C][C]-7657.43328196939[/C][C]4937.908632[/C][C]-1.5507[/C][C]0.126914[/C][C]0.063457[/C][/ROW]
[ROW][C]M8[/C][C]-13975.7005108038[/C][C]5248.174096[/C][C]-2.663[/C][C]0.010235[/C][C]0.005117[/C][/ROW]
[ROW][C]M9[/C][C]-7847.9064228879[/C][C]5087.925466[/C][C]-1.5425[/C][C]0.128913[/C][C]0.064456[/C][/ROW]
[ROW][C]M10[/C][C]-4738.03673981474[/C][C]4961.929918[/C][C]-0.9549[/C][C]0.343975[/C][C]0.171987[/C][/ROW]
[ROW][C]M11[/C][C]-1569.55783649424[/C][C]4926.611899[/C][C]-0.3186[/C][C]0.751291[/C][C]0.375646[/C][/ROW]
[ROW][C]t[/C][C]455.91333933419[/C][C]85.376267[/C][C]5.34[/C][C]2e-06[/C][C]1e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-19851.073219076524988.342126-0.79440.4304980.215249
X0.9279975995407390.07641112.144800
M13488.774110538024731.1571470.73740.4641290.232064
M25238.898593500104742.2580341.10470.2742680.137134
M35813.703098501144778.2741741.21670.2291110.114555
M46726.84179832214817.9769521.39620.1684760.084238
M55285.694004866054888.6857931.08120.2844990.14225
M6-899.2074935244734797.847171-0.18740.8520480.426024
M7-7657.433281969394937.908632-1.55070.1269140.063457
M8-13975.70051080385248.174096-2.6630.0102350.005117
M9-7847.90642288795087.925466-1.54250.1289130.064456
M10-4738.036739814744961.929918-0.95490.3439750.171987
M11-1569.557836494244926.611899-0.31860.7512910.375646
t455.9133393341985.3762675.342e-061e-06







Multiple Linear Regression - Regression Statistics
Multiple R0.911439378287059
R-squared0.830721740292301
Adjusted R-squared0.789200657722488
F-TEST (value)20.0072273861245
F-TEST (DF numerator)13
F-TEST (DF denominator)53
p-value6.66133814775094e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation7787.83778390367
Sum Squared Residuals3214472119.46507

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R & 0.911439378287059 \tabularnewline
R-squared & 0.830721740292301 \tabularnewline
Adjusted R-squared & 0.789200657722488 \tabularnewline
F-TEST (value) & 20.0072273861245 \tabularnewline
F-TEST (DF numerator) & 13 \tabularnewline
F-TEST (DF denominator) & 53 \tabularnewline
p-value & 6.66133814775094e-16 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation & 7787.83778390367 \tabularnewline
Sum Squared Residuals & 3214472119.46507 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C]0.911439378287059[/C][/ROW]
[ROW][C]R-squared[/C][C]0.830721740292301[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]0.789200657722488[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C]20.0072273861245[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]13[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]53[/C][/ROW]
[ROW][C]p-value[/C][C]6.66133814775094e-16[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C]7787.83778390367[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C]3214472119.46507[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R0.911439378287059
R-squared0.830721740292301
Adjusted R-squared0.789200657722488
F-TEST (value)20.0072273861245
F-TEST (DF numerator)13
F-TEST (DF denominator)53
p-value6.66133814775094e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation7787.83778390367
Sum Squared Residuals3214472119.46507







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1267413257771.2423065549641.75769344596
2267366258655.8115471048710.18845289556
3264777256964.7124319877812.28756801327
4258863252933.7464394145929.25356058568
5254844249240.6149898335603.38501016744
6254868249113.0203416045754.97965839585
7277267269174.1916978468092.80830215374
8285351271802.08784654413548.9121534557
9286602278941.6658359197660.33416408076
10283042284614.931406884-1572.93140688361
11276687278215.093579299-1528.09357929924
12277915280295.316613501-2380.31661350057
13277128280711.757189919-3583.75718991889
14277103281561.990519286-4458.99051928617
15275037279915.435288946-4878.43528894634
16270150275307.254789460-5157.2547894596
17267140271877.674658147-4737.67465814742
18264993269599.909571783-4606.90957178310
19287259290618.774450751-3359.77445075127
20291186288674.4264265122511.57357348796
21292300293619.290092973-1319.29009297319
22288186286048.1739232922137.82607670787
23281477280388.8781801411088.12181985873
24282656282932.172016513-276.172016513435
25280190285701.086507767-5511.08650776752
26280408284609.020861296-4201.02086129601
27276836279421.226791109-2585.22679110875
28275216277102.416369689-1886.41636968901
29274352275591.935274227-1239.93527422708
30271311272839.963414497-1528.96341449744
31289802292645.935430866-2843.93543086586
32290726291718.672775723-992.672775723291
33292300291373.022127203926.977872797318
34278506277773.633550905732.366449095013
35269826269145.673486823680.326513176694
36265861266992.37147192-1131.37147191979
37269034271056.770612133-2022.77061213275
38264176266893.032911181-2717.03291118140
39255198260311.386446484-5113.38644648395
40253353258052.895869034-4699.89586903435
41246057250028.799622396-3971.79962239598
42235372242730.567522516-7358.56752251627
43258556267531.022619613-8975.02261961294
44260993267971.628426193-6978.62842619341
45254663259146.863710669-4483.86371066908
46250643252906.496098729-2263.49609872944
47243422247248.128353178-3826.12835317812
48247105249950.109779072-2845.10977907175
49248541255034.37828118-6493.37828117998
50245039251803.278167767-6764.27816776707
51237080246356.572767308-9276.57276730794
52237085245513.278529158-8428.27852915797
53225554235846.626531332-10292.6265313325
54226839236556.08571789-9717.08571788981
55247934257819.013965537-9885.01396553719
56248333256422.184525027-8089.184525027
57246969249753.158233236-2784.15823323581
58245098244131.76502019966.23497981016
59246263242677.2264005583585.77359944193
60255765249132.0301189946632.96988100556
61264319256349.7651024477969.23489755317
62268347258915.8659933659431.1340066351
63273046259004.66627416614041.3337258337
64273963259720.40800324514242.5919967552
65267430252791.34892406414638.6510759355
66271993254536.45343170917456.5465682908
67292710275739.06183538616970.9381646135

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 & 267413 & 257771.242306554 & 9641.75769344596 \tabularnewline
2 & 267366 & 258655.811547104 & 8710.18845289556 \tabularnewline
3 & 264777 & 256964.712431987 & 7812.28756801327 \tabularnewline
4 & 258863 & 252933.746439414 & 5929.25356058568 \tabularnewline
5 & 254844 & 249240.614989833 & 5603.38501016744 \tabularnewline
6 & 254868 & 249113.020341604 & 5754.97965839585 \tabularnewline
7 & 277267 & 269174.191697846 & 8092.80830215374 \tabularnewline
8 & 285351 & 271802.087846544 & 13548.9121534557 \tabularnewline
9 & 286602 & 278941.665835919 & 7660.33416408076 \tabularnewline
10 & 283042 & 284614.931406884 & -1572.93140688361 \tabularnewline
11 & 276687 & 278215.093579299 & -1528.09357929924 \tabularnewline
12 & 277915 & 280295.316613501 & -2380.31661350057 \tabularnewline
13 & 277128 & 280711.757189919 & -3583.75718991889 \tabularnewline
14 & 277103 & 281561.990519286 & -4458.99051928617 \tabularnewline
15 & 275037 & 279915.435288946 & -4878.43528894634 \tabularnewline
16 & 270150 & 275307.254789460 & -5157.2547894596 \tabularnewline
17 & 267140 & 271877.674658147 & -4737.67465814742 \tabularnewline
18 & 264993 & 269599.909571783 & -4606.90957178310 \tabularnewline
19 & 287259 & 290618.774450751 & -3359.77445075127 \tabularnewline
20 & 291186 & 288674.426426512 & 2511.57357348796 \tabularnewline
21 & 292300 & 293619.290092973 & -1319.29009297319 \tabularnewline
22 & 288186 & 286048.173923292 & 2137.82607670787 \tabularnewline
23 & 281477 & 280388.878180141 & 1088.12181985873 \tabularnewline
24 & 282656 & 282932.172016513 & -276.172016513435 \tabularnewline
25 & 280190 & 285701.086507767 & -5511.08650776752 \tabularnewline
26 & 280408 & 284609.020861296 & -4201.02086129601 \tabularnewline
27 & 276836 & 279421.226791109 & -2585.22679110875 \tabularnewline
28 & 275216 & 277102.416369689 & -1886.41636968901 \tabularnewline
29 & 274352 & 275591.935274227 & -1239.93527422708 \tabularnewline
30 & 271311 & 272839.963414497 & -1528.96341449744 \tabularnewline
31 & 289802 & 292645.935430866 & -2843.93543086586 \tabularnewline
32 & 290726 & 291718.672775723 & -992.672775723291 \tabularnewline
33 & 292300 & 291373.022127203 & 926.977872797318 \tabularnewline
34 & 278506 & 277773.633550905 & 732.366449095013 \tabularnewline
35 & 269826 & 269145.673486823 & 680.326513176694 \tabularnewline
36 & 265861 & 266992.37147192 & -1131.37147191979 \tabularnewline
37 & 269034 & 271056.770612133 & -2022.77061213275 \tabularnewline
38 & 264176 & 266893.032911181 & -2717.03291118140 \tabularnewline
39 & 255198 & 260311.386446484 & -5113.38644648395 \tabularnewline
40 & 253353 & 258052.895869034 & -4699.89586903435 \tabularnewline
41 & 246057 & 250028.799622396 & -3971.79962239598 \tabularnewline
42 & 235372 & 242730.567522516 & -7358.56752251627 \tabularnewline
43 & 258556 & 267531.022619613 & -8975.02261961294 \tabularnewline
44 & 260993 & 267971.628426193 & -6978.62842619341 \tabularnewline
45 & 254663 & 259146.863710669 & -4483.86371066908 \tabularnewline
46 & 250643 & 252906.496098729 & -2263.49609872944 \tabularnewline
47 & 243422 & 247248.128353178 & -3826.12835317812 \tabularnewline
48 & 247105 & 249950.109779072 & -2845.10977907175 \tabularnewline
49 & 248541 & 255034.37828118 & -6493.37828117998 \tabularnewline
50 & 245039 & 251803.278167767 & -6764.27816776707 \tabularnewline
51 & 237080 & 246356.572767308 & -9276.57276730794 \tabularnewline
52 & 237085 & 245513.278529158 & -8428.27852915797 \tabularnewline
53 & 225554 & 235846.626531332 & -10292.6265313325 \tabularnewline
54 & 226839 & 236556.08571789 & -9717.08571788981 \tabularnewline
55 & 247934 & 257819.013965537 & -9885.01396553719 \tabularnewline
56 & 248333 & 256422.184525027 & -8089.184525027 \tabularnewline
57 & 246969 & 249753.158233236 & -2784.15823323581 \tabularnewline
58 & 245098 & 244131.76502019 & 966.23497981016 \tabularnewline
59 & 246263 & 242677.226400558 & 3585.77359944193 \tabularnewline
60 & 255765 & 249132.030118994 & 6632.96988100556 \tabularnewline
61 & 264319 & 256349.765102447 & 7969.23489755317 \tabularnewline
62 & 268347 & 258915.865993365 & 9431.1340066351 \tabularnewline
63 & 273046 & 259004.666274166 & 14041.3337258337 \tabularnewline
64 & 273963 & 259720.408003245 & 14242.5919967552 \tabularnewline
65 & 267430 & 252791.348924064 & 14638.6510759355 \tabularnewline
66 & 271993 & 254536.453431709 & 17456.5465682908 \tabularnewline
67 & 292710 & 275739.061835386 & 16970.9381646135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C]267413[/C][C]257771.242306554[/C][C]9641.75769344596[/C][/ROW]
[ROW][C]2[/C][C]267366[/C][C]258655.811547104[/C][C]8710.18845289556[/C][/ROW]
[ROW][C]3[/C][C]264777[/C][C]256964.712431987[/C][C]7812.28756801327[/C][/ROW]
[ROW][C]4[/C][C]258863[/C][C]252933.746439414[/C][C]5929.25356058568[/C][/ROW]
[ROW][C]5[/C][C]254844[/C][C]249240.614989833[/C][C]5603.38501016744[/C][/ROW]
[ROW][C]6[/C][C]254868[/C][C]249113.020341604[/C][C]5754.97965839585[/C][/ROW]
[ROW][C]7[/C][C]277267[/C][C]269174.191697846[/C][C]8092.80830215374[/C][/ROW]
[ROW][C]8[/C][C]285351[/C][C]271802.087846544[/C][C]13548.9121534557[/C][/ROW]
[ROW][C]9[/C][C]286602[/C][C]278941.665835919[/C][C]7660.33416408076[/C][/ROW]
[ROW][C]10[/C][C]283042[/C][C]284614.931406884[/C][C]-1572.93140688361[/C][/ROW]
[ROW][C]11[/C][C]276687[/C][C]278215.093579299[/C][C]-1528.09357929924[/C][/ROW]
[ROW][C]12[/C][C]277915[/C][C]280295.316613501[/C][C]-2380.31661350057[/C][/ROW]
[ROW][C]13[/C][C]277128[/C][C]280711.757189919[/C][C]-3583.75718991889[/C][/ROW]
[ROW][C]14[/C][C]277103[/C][C]281561.990519286[/C][C]-4458.99051928617[/C][/ROW]
[ROW][C]15[/C][C]275037[/C][C]279915.435288946[/C][C]-4878.43528894634[/C][/ROW]
[ROW][C]16[/C][C]270150[/C][C]275307.254789460[/C][C]-5157.2547894596[/C][/ROW]
[ROW][C]17[/C][C]267140[/C][C]271877.674658147[/C][C]-4737.67465814742[/C][/ROW]
[ROW][C]18[/C][C]264993[/C][C]269599.909571783[/C][C]-4606.90957178310[/C][/ROW]
[ROW][C]19[/C][C]287259[/C][C]290618.774450751[/C][C]-3359.77445075127[/C][/ROW]
[ROW][C]20[/C][C]291186[/C][C]288674.426426512[/C][C]2511.57357348796[/C][/ROW]
[ROW][C]21[/C][C]292300[/C][C]293619.290092973[/C][C]-1319.29009297319[/C][/ROW]
[ROW][C]22[/C][C]288186[/C][C]286048.173923292[/C][C]2137.82607670787[/C][/ROW]
[ROW][C]23[/C][C]281477[/C][C]280388.878180141[/C][C]1088.12181985873[/C][/ROW]
[ROW][C]24[/C][C]282656[/C][C]282932.172016513[/C][C]-276.172016513435[/C][/ROW]
[ROW][C]25[/C][C]280190[/C][C]285701.086507767[/C][C]-5511.08650776752[/C][/ROW]
[ROW][C]26[/C][C]280408[/C][C]284609.020861296[/C][C]-4201.02086129601[/C][/ROW]
[ROW][C]27[/C][C]276836[/C][C]279421.226791109[/C][C]-2585.22679110875[/C][/ROW]
[ROW][C]28[/C][C]275216[/C][C]277102.416369689[/C][C]-1886.41636968901[/C][/ROW]
[ROW][C]29[/C][C]274352[/C][C]275591.935274227[/C][C]-1239.93527422708[/C][/ROW]
[ROW][C]30[/C][C]271311[/C][C]272839.963414497[/C][C]-1528.96341449744[/C][/ROW]
[ROW][C]31[/C][C]289802[/C][C]292645.935430866[/C][C]-2843.93543086586[/C][/ROW]
[ROW][C]32[/C][C]290726[/C][C]291718.672775723[/C][C]-992.672775723291[/C][/ROW]
[ROW][C]33[/C][C]292300[/C][C]291373.022127203[/C][C]926.977872797318[/C][/ROW]
[ROW][C]34[/C][C]278506[/C][C]277773.633550905[/C][C]732.366449095013[/C][/ROW]
[ROW][C]35[/C][C]269826[/C][C]269145.673486823[/C][C]680.326513176694[/C][/ROW]
[ROW][C]36[/C][C]265861[/C][C]266992.37147192[/C][C]-1131.37147191979[/C][/ROW]
[ROW][C]37[/C][C]269034[/C][C]271056.770612133[/C][C]-2022.77061213275[/C][/ROW]
[ROW][C]38[/C][C]264176[/C][C]266893.032911181[/C][C]-2717.03291118140[/C][/ROW]
[ROW][C]39[/C][C]255198[/C][C]260311.386446484[/C][C]-5113.38644648395[/C][/ROW]
[ROW][C]40[/C][C]253353[/C][C]258052.895869034[/C][C]-4699.89586903435[/C][/ROW]
[ROW][C]41[/C][C]246057[/C][C]250028.799622396[/C][C]-3971.79962239598[/C][/ROW]
[ROW][C]42[/C][C]235372[/C][C]242730.567522516[/C][C]-7358.56752251627[/C][/ROW]
[ROW][C]43[/C][C]258556[/C][C]267531.022619613[/C][C]-8975.02261961294[/C][/ROW]
[ROW][C]44[/C][C]260993[/C][C]267971.628426193[/C][C]-6978.62842619341[/C][/ROW]
[ROW][C]45[/C][C]254663[/C][C]259146.863710669[/C][C]-4483.86371066908[/C][/ROW]
[ROW][C]46[/C][C]250643[/C][C]252906.496098729[/C][C]-2263.49609872944[/C][/ROW]
[ROW][C]47[/C][C]243422[/C][C]247248.128353178[/C][C]-3826.12835317812[/C][/ROW]
[ROW][C]48[/C][C]247105[/C][C]249950.109779072[/C][C]-2845.10977907175[/C][/ROW]
[ROW][C]49[/C][C]248541[/C][C]255034.37828118[/C][C]-6493.37828117998[/C][/ROW]
[ROW][C]50[/C][C]245039[/C][C]251803.278167767[/C][C]-6764.27816776707[/C][/ROW]
[ROW][C]51[/C][C]237080[/C][C]246356.572767308[/C][C]-9276.57276730794[/C][/ROW]
[ROW][C]52[/C][C]237085[/C][C]245513.278529158[/C][C]-8428.27852915797[/C][/ROW]
[ROW][C]53[/C][C]225554[/C][C]235846.626531332[/C][C]-10292.6265313325[/C][/ROW]
[ROW][C]54[/C][C]226839[/C][C]236556.08571789[/C][C]-9717.08571788981[/C][/ROW]
[ROW][C]55[/C][C]247934[/C][C]257819.013965537[/C][C]-9885.01396553719[/C][/ROW]
[ROW][C]56[/C][C]248333[/C][C]256422.184525027[/C][C]-8089.184525027[/C][/ROW]
[ROW][C]57[/C][C]246969[/C][C]249753.158233236[/C][C]-2784.15823323581[/C][/ROW]
[ROW][C]58[/C][C]245098[/C][C]244131.76502019[/C][C]966.23497981016[/C][/ROW]
[ROW][C]59[/C][C]246263[/C][C]242677.226400558[/C][C]3585.77359944193[/C][/ROW]
[ROW][C]60[/C][C]255765[/C][C]249132.030118994[/C][C]6632.96988100556[/C][/ROW]
[ROW][C]61[/C][C]264319[/C][C]256349.765102447[/C][C]7969.23489755317[/C][/ROW]
[ROW][C]62[/C][C]268347[/C][C]258915.865993365[/C][C]9431.1340066351[/C][/ROW]
[ROW][C]63[/C][C]273046[/C][C]259004.666274166[/C][C]14041.3337258337[/C][/ROW]
[ROW][C]64[/C][C]273963[/C][C]259720.408003245[/C][C]14242.5919967552[/C][/ROW]
[ROW][C]65[/C][C]267430[/C][C]252791.348924064[/C][C]14638.6510759355[/C][/ROW]
[ROW][C]66[/C][C]271993[/C][C]254536.453431709[/C][C]17456.5465682908[/C][/ROW]
[ROW][C]67[/C][C]292710[/C][C]275739.061835386[/C][C]16970.9381646135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1267413257771.2423065549641.75769344596
2267366258655.8115471048710.18845289556
3264777256964.7124319877812.28756801327
4258863252933.7464394145929.25356058568
5254844249240.6149898335603.38501016744
6254868249113.0203416045754.97965839585
7277267269174.1916978468092.80830215374
8285351271802.08784654413548.9121534557
9286602278941.6658359197660.33416408076
10283042284614.931406884-1572.93140688361
11276687278215.093579299-1528.09357929924
12277915280295.316613501-2380.31661350057
13277128280711.757189919-3583.75718991889
14277103281561.990519286-4458.99051928617
15275037279915.435288946-4878.43528894634
16270150275307.254789460-5157.2547894596
17267140271877.674658147-4737.67465814742
18264993269599.909571783-4606.90957178310
19287259290618.774450751-3359.77445075127
20291186288674.4264265122511.57357348796
21292300293619.290092973-1319.29009297319
22288186286048.1739232922137.82607670787
23281477280388.8781801411088.12181985873
24282656282932.172016513-276.172016513435
25280190285701.086507767-5511.08650776752
26280408284609.020861296-4201.02086129601
27276836279421.226791109-2585.22679110875
28275216277102.416369689-1886.41636968901
29274352275591.935274227-1239.93527422708
30271311272839.963414497-1528.96341449744
31289802292645.935430866-2843.93543086586
32290726291718.672775723-992.672775723291
33292300291373.022127203926.977872797318
34278506277773.633550905732.366449095013
35269826269145.673486823680.326513176694
36265861266992.37147192-1131.37147191979
37269034271056.770612133-2022.77061213275
38264176266893.032911181-2717.03291118140
39255198260311.386446484-5113.38644648395
40253353258052.895869034-4699.89586903435
41246057250028.799622396-3971.79962239598
42235372242730.567522516-7358.56752251627
43258556267531.022619613-8975.02261961294
44260993267971.628426193-6978.62842619341
45254663259146.863710669-4483.86371066908
46250643252906.496098729-2263.49609872944
47243422247248.128353178-3826.12835317812
48247105249950.109779072-2845.10977907175
49248541255034.37828118-6493.37828117998
50245039251803.278167767-6764.27816776707
51237080246356.572767308-9276.57276730794
52237085245513.278529158-8428.27852915797
53225554235846.626531332-10292.6265313325
54226839236556.08571789-9717.08571788981
55247934257819.013965537-9885.01396553719
56248333256422.184525027-8089.184525027
57246969249753.158233236-2784.15823323581
58245098244131.76502019966.23497981016
59246263242677.2264005583585.77359944193
60255765249132.0301189946632.96988100556
61264319256349.7651024477969.23489755317
62268347258915.8659933659431.1340066351
63273046259004.66627416614041.3337258337
64273963259720.40800324514242.5919967552
65267430252791.34892406414638.6510759355
66271993254536.45343170917456.5465682908
67292710275739.06183538616970.9381646135







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.007262019070656870.01452403814131370.992737980929343
180.00554633716539110.01109267433078220.994453662834609
190.001750749498270930.003501498996541860.99824925050173
200.007060266742063050.01412053348412610.992939733257937
210.002505557080550280.005011114161100550.99749444291945
220.01754710170578800.03509420341157600.982452898294212
230.008424221765466520.01684844353093300.991575778234533
240.00340802557915130.00681605115830260.996591974420849
250.004353053646896010.008706107293792020.995646946353104
260.002256326529787140.004512653059574280.997743673470213
270.001047447995514910.002094895991029820.998952552004485
280.001480808762571970.002961617525143930.998519191237428
290.007425248342700350.01485049668540070.9925747516573
300.006003240647793670.01200648129558730.993996759352206
310.00418118485394130.00836236970788260.995818815146059
320.03875503033040360.07751006066080730.961244969669596
330.1136759716966360.2273519433932720.886324028303364
340.5525786383050950.8948427233898110.447421361694905
350.7989669726296510.4020660547406980.201033027370349
360.9326906540491040.1346186919017910.0673093459508957
370.942016081515580.1159678369688410.0579839184844206
380.9360262936827790.1279474126344430.0639737063172214
390.9542891556807460.0914216886385080.045710844319254
400.943208973969480.113582052061040.05679102603052
410.9494411814930930.1011176370138140.050558818506907
420.9997228839585280.0005542320829439120.000277116041471956
430.9999515286479249.69427041527627e-054.84713520763814e-05
440.999963656168247.26876635207699e-053.63438317603850e-05
450.999918092037130.0001638159257394548.1907962869727e-05
460.9996516883704770.0006966232590469010.000348311629523451
470.9985045976969790.002990804606042520.00149540230302126
480.9971965325034520.005606934993095450.00280346749654773
490.9964744196692940.007051160661411380.00352558033070569
500.9874336375807120.02513272483857550.0125663624192877

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
17 & 0.00726201907065687 & 0.0145240381413137 & 0.992737980929343 \tabularnewline
18 & 0.0055463371653911 & 0.0110926743307822 & 0.994453662834609 \tabularnewline
19 & 0.00175074949827093 & 0.00350149899654186 & 0.99824925050173 \tabularnewline
20 & 0.00706026674206305 & 0.0141205334841261 & 0.992939733257937 \tabularnewline
21 & 0.00250555708055028 & 0.00501111416110055 & 0.99749444291945 \tabularnewline
22 & 0.0175471017057880 & 0.0350942034115760 & 0.982452898294212 \tabularnewline
23 & 0.00842422176546652 & 0.0168484435309330 & 0.991575778234533 \tabularnewline
24 & 0.0034080255791513 & 0.0068160511583026 & 0.996591974420849 \tabularnewline
25 & 0.00435305364689601 & 0.00870610729379202 & 0.995646946353104 \tabularnewline
26 & 0.00225632652978714 & 0.00451265305957428 & 0.997743673470213 \tabularnewline
27 & 0.00104744799551491 & 0.00209489599102982 & 0.998952552004485 \tabularnewline
28 & 0.00148080876257197 & 0.00296161752514393 & 0.998519191237428 \tabularnewline
29 & 0.00742524834270035 & 0.0148504966854007 & 0.9925747516573 \tabularnewline
30 & 0.00600324064779367 & 0.0120064812955873 & 0.993996759352206 \tabularnewline
31 & 0.0041811848539413 & 0.0083623697078826 & 0.995818815146059 \tabularnewline
32 & 0.0387550303304036 & 0.0775100606608073 & 0.961244969669596 \tabularnewline
33 & 0.113675971696636 & 0.227351943393272 & 0.886324028303364 \tabularnewline
34 & 0.552578638305095 & 0.894842723389811 & 0.447421361694905 \tabularnewline
35 & 0.798966972629651 & 0.402066054740698 & 0.201033027370349 \tabularnewline
36 & 0.932690654049104 & 0.134618691901791 & 0.0673093459508957 \tabularnewline
37 & 0.94201608151558 & 0.115967836968841 & 0.0579839184844206 \tabularnewline
38 & 0.936026293682779 & 0.127947412634443 & 0.0639737063172214 \tabularnewline
39 & 0.954289155680746 & 0.091421688638508 & 0.045710844319254 \tabularnewline
40 & 0.94320897396948 & 0.11358205206104 & 0.05679102603052 \tabularnewline
41 & 0.949441181493093 & 0.101117637013814 & 0.050558818506907 \tabularnewline
42 & 0.999722883958528 & 0.000554232082943912 & 0.000277116041471956 \tabularnewline
43 & 0.999951528647924 & 9.69427041527627e-05 & 4.84713520763814e-05 \tabularnewline
44 & 0.99996365616824 & 7.26876635207699e-05 & 3.63438317603850e-05 \tabularnewline
45 & 0.99991809203713 & 0.000163815925739454 & 8.1907962869727e-05 \tabularnewline
46 & 0.999651688370477 & 0.000696623259046901 & 0.000348311629523451 \tabularnewline
47 & 0.998504597696979 & 0.00299080460604252 & 0.00149540230302126 \tabularnewline
48 & 0.997196532503452 & 0.00560693499309545 & 0.00280346749654773 \tabularnewline
49 & 0.996474419669294 & 0.00705116066141138 & 0.00352558033070569 \tabularnewline
50 & 0.987433637580712 & 0.0251327248385755 & 0.0125663624192877 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]17[/C][C]0.00726201907065687[/C][C]0.0145240381413137[/C][C]0.992737980929343[/C][/ROW]
[ROW][C]18[/C][C]0.0055463371653911[/C][C]0.0110926743307822[/C][C]0.994453662834609[/C][/ROW]
[ROW][C]19[/C][C]0.00175074949827093[/C][C]0.00350149899654186[/C][C]0.99824925050173[/C][/ROW]
[ROW][C]20[/C][C]0.00706026674206305[/C][C]0.0141205334841261[/C][C]0.992939733257937[/C][/ROW]
[ROW][C]21[/C][C]0.00250555708055028[/C][C]0.00501111416110055[/C][C]0.99749444291945[/C][/ROW]
[ROW][C]22[/C][C]0.0175471017057880[/C][C]0.0350942034115760[/C][C]0.982452898294212[/C][/ROW]
[ROW][C]23[/C][C]0.00842422176546652[/C][C]0.0168484435309330[/C][C]0.991575778234533[/C][/ROW]
[ROW][C]24[/C][C]0.0034080255791513[/C][C]0.0068160511583026[/C][C]0.996591974420849[/C][/ROW]
[ROW][C]25[/C][C]0.00435305364689601[/C][C]0.00870610729379202[/C][C]0.995646946353104[/C][/ROW]
[ROW][C]26[/C][C]0.00225632652978714[/C][C]0.00451265305957428[/C][C]0.997743673470213[/C][/ROW]
[ROW][C]27[/C][C]0.00104744799551491[/C][C]0.00209489599102982[/C][C]0.998952552004485[/C][/ROW]
[ROW][C]28[/C][C]0.00148080876257197[/C][C]0.00296161752514393[/C][C]0.998519191237428[/C][/ROW]
[ROW][C]29[/C][C]0.00742524834270035[/C][C]0.0148504966854007[/C][C]0.9925747516573[/C][/ROW]
[ROW][C]30[/C][C]0.00600324064779367[/C][C]0.0120064812955873[/C][C]0.993996759352206[/C][/ROW]
[ROW][C]31[/C][C]0.0041811848539413[/C][C]0.0083623697078826[/C][C]0.995818815146059[/C][/ROW]
[ROW][C]32[/C][C]0.0387550303304036[/C][C]0.0775100606608073[/C][C]0.961244969669596[/C][/ROW]
[ROW][C]33[/C][C]0.113675971696636[/C][C]0.227351943393272[/C][C]0.886324028303364[/C][/ROW]
[ROW][C]34[/C][C]0.552578638305095[/C][C]0.894842723389811[/C][C]0.447421361694905[/C][/ROW]
[ROW][C]35[/C][C]0.798966972629651[/C][C]0.402066054740698[/C][C]0.201033027370349[/C][/ROW]
[ROW][C]36[/C][C]0.932690654049104[/C][C]0.134618691901791[/C][C]0.0673093459508957[/C][/ROW]
[ROW][C]37[/C][C]0.94201608151558[/C][C]0.115967836968841[/C][C]0.0579839184844206[/C][/ROW]
[ROW][C]38[/C][C]0.936026293682779[/C][C]0.127947412634443[/C][C]0.0639737063172214[/C][/ROW]
[ROW][C]39[/C][C]0.954289155680746[/C][C]0.091421688638508[/C][C]0.045710844319254[/C][/ROW]
[ROW][C]40[/C][C]0.94320897396948[/C][C]0.11358205206104[/C][C]0.05679102603052[/C][/ROW]
[ROW][C]41[/C][C]0.949441181493093[/C][C]0.101117637013814[/C][C]0.050558818506907[/C][/ROW]
[ROW][C]42[/C][C]0.999722883958528[/C][C]0.000554232082943912[/C][C]0.000277116041471956[/C][/ROW]
[ROW][C]43[/C][C]0.999951528647924[/C][C]9.69427041527627e-05[/C][C]4.84713520763814e-05[/C][/ROW]
[ROW][C]44[/C][C]0.99996365616824[/C][C]7.26876635207699e-05[/C][C]3.63438317603850e-05[/C][/ROW]
[ROW][C]45[/C][C]0.99991809203713[/C][C]0.000163815925739454[/C][C]8.1907962869727e-05[/C][/ROW]
[ROW][C]46[/C][C]0.999651688370477[/C][C]0.000696623259046901[/C][C]0.000348311629523451[/C][/ROW]
[ROW][C]47[/C][C]0.998504597696979[/C][C]0.00299080460604252[/C][C]0.00149540230302126[/C][/ROW]
[ROW][C]48[/C][C]0.997196532503452[/C][C]0.00560693499309545[/C][C]0.00280346749654773[/C][/ROW]
[ROW][C]49[/C][C]0.996474419669294[/C][C]0.00705116066141138[/C][C]0.00352558033070569[/C][/ROW]
[ROW][C]50[/C][C]0.987433637580712[/C][C]0.0251327248385755[/C][C]0.0125663624192877[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
170.007262019070656870.01452403814131370.992737980929343
180.00554633716539110.01109267433078220.994453662834609
190.001750749498270930.003501498996541860.99824925050173
200.007060266742063050.01412053348412610.992939733257937
210.002505557080550280.005011114161100550.99749444291945
220.01754710170578800.03509420341157600.982452898294212
230.008424221765466520.01684844353093300.991575778234533
240.00340802557915130.00681605115830260.996591974420849
250.004353053646896010.008706107293792020.995646946353104
260.002256326529787140.004512653059574280.997743673470213
270.001047447995514910.002094895991029820.998952552004485
280.001480808762571970.002961617525143930.998519191237428
290.007425248342700350.01485049668540070.9925747516573
300.006003240647793670.01200648129558730.993996759352206
310.00418118485394130.00836236970788260.995818815146059
320.03875503033040360.07751006066080730.961244969669596
330.1136759716966360.2273519433932720.886324028303364
340.5525786383050950.8948427233898110.447421361694905
350.7989669726296510.4020660547406980.201033027370349
360.9326906540491040.1346186919017910.0673093459508957
370.942016081515580.1159678369688410.0579839184844206
380.9360262936827790.1279474126344430.0639737063172214
390.9542891556807460.0914216886385080.045710844319254
400.943208973969480.113582052061040.05679102603052
410.9494411814930930.1011176370138140.050558818506907
420.9997228839585280.0005542320829439120.000277116041471956
430.9999515286479249.69427041527627e-054.84713520763814e-05
440.999963656168247.26876635207699e-053.63438317603850e-05
450.999918092037130.0001638159257394548.1907962869727e-05
460.9996516883704770.0006966232590469010.000348311629523451
470.9985045976969790.002990804606042520.00149540230302126
480.9971965325034520.005606934993095450.00280346749654773
490.9964744196692940.007051160661411380.00352558033070569
500.9874336375807120.02513272483857550.0125663624192877







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level160.470588235294118NOK
5% type I error level240.705882352941177NOK
10% type I error level260.764705882352941NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 16 & 0.470588235294118 & NOK \tabularnewline
5% type I error level & 24 & 0.705882352941177 & NOK \tabularnewline
10% type I error level & 26 & 0.764705882352941 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=61852&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]16[/C][C]0.470588235294118[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]24[/C][C]0.705882352941177[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]26[/C][C]0.764705882352941[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=61852&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=61852&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level160.470588235294118NOK
5% type I error level240.705882352941177NOK
10% type I error level260.764705882352941NOK



Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}