## Free Statistics

of Irreproducible Research!

Author's title
Author*The author of this computation has been verified*
R Software Modulerwasp_linear_regression.wasp
Title produced by softwareLinear Regression Graphical Model Validation
Date of computationMon, 16 Nov 2009 06:17:11 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Nov/16/t1258377505i4u55f05xnboswu.htm/, Retrieved Fri, 02 Dec 2022 10:41:32 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=57335, Retrieved Fri, 02 Dec 2022 10:41:32 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact173
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Linear Regression Graphical Model Validation] [] [2009-11-16 13:17:11] [21503129a47c64de7f80e1fde84c3a45] [Current]
Feedback Forum

Post a new message
Dataseries X:
98.8
100.5
110.4
96.4
101.9
106.2
81
94.7
101
109.4
102.3
90.7
96.2
96.1
106
103.1
102
104.7
86
92.1
106.9
112.6
101.7
92
97.4
97
105.4
102.7
98.1
104.5
87.4
89.9
109.8
111.7
98.6
96.9
95.1
97
112.7
102.9
97.4
111.4
87.4
96.8
114.1
110.3
103.9
101.6
94.6
95.9
104.7
102.8
98.1
113.9
80.9
95.7
113.2
105.9
108.8
102.3
Dataseries Y:
99.9
98.6
107.2
95.7
93.7
106.7
86.7
95.3
99.3
101.8
96
91.7
95.3
96.6
107.2
108
98.4
103.1
81.1
96.6
103.7
106.6
97.6
87.6
99.4
98.5
105.2
104.6
97.5
108.9
86.8
88.9
110.3
114.8
94.6
92
93.8
93.8
107.6
101
95.4
96.5
89.2
87.1
110.5
110.8
104.2
88.9
89.8
90
93.9
91.3
87.8
99.7
73.5
79.2
96.9
95.2
95.6
89.7

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 3 seconds R Server 'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57335&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57335&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57335&T=0

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Summary of computational transaction Raw Input view raw input (R code) Raw Output view raw output of R engine Computing time 3 seconds R Server 'Gwilym Jenkins' @ 72.249.127.135

 Simple Linear Regression Statistics Estimate S.D. T-STAT (H0: coeff=0) P-value (two-sided) constant term 16.3383193313249 8.9602837146211 1.82341540197713 0.0733947791026506 slope 0.800894252855453 0.0887469798806386 9.0244676938035 1.20836674000202e-12

\begin{tabular}{lllllllll}
\hline
Simple Linear Regression \tabularnewline
Statistics & Estimate & S.D. & T-STAT (H0: coeff=0) & P-value (two-sided) \tabularnewline
constant term & 16.3383193313249 & 8.9602837146211 & 1.82341540197713 & 0.0733947791026506 \tabularnewline
slope & 0.800894252855453 & 0.0887469798806386 & 9.0244676938035 & 1.20836674000202e-12 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=57335&T=1

[TABLE]
[ROW][C]Simple Linear Regression[/C][/ROW]
[ROW][C]Statistics[/C][C]Estimate[/C][C]S.D.[/C][C]T-STAT (H0: coeff=0)[/C][C]P-value (two-sided)[/C][/ROW]
[ROW][C]constant term[/C][C]16.3383193313249[/C][C]8.9602837146211[/C][C]1.82341540197713[/C][C]0.0733947791026506[/C][/ROW]
[ROW][C]slope[/C][C]0.800894252855453[/C][C]0.0887469798806386[/C][C]9.0244676938035[/C][C]1.20836674000202e-12[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=57335&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=57335&T=1

As an alternative you can also use a QR Code:

The GUIDs for individual cells are displayed in the table below:

 Simple Linear Regression Statistics Estimate S.D. T-STAT (H0: coeff=0) P-value (two-sided) constant term 16.3383193313249 8.9602837146211 1.82341540197713 0.0733947791026506 slope 0.800894252855453 0.0887469798806386 9.0244676938035 1.20836674000202e-12

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

 PNG link Postscript link PDF link

Parameters (Session):
par1 = 0 ;
Parameters (R input):
par1 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)library(lattice)z <- as.data.frame(cbind(x,y))m <- lm(y~x)summary(m)bitmap(file='test1.png')plot(z,main='Scatterplot, lowess, and regression line')lines(lowess(z),col='red')abline(m)grid()dev.off()bitmap(file='test2.png')m2 <- lm(m$fitted.values ~ x)summary(m2)z2 <- as.data.frame(cbind(x,m$fitted.values))names(z2) <- list('x','Fitted')plot(z2,main='Scatterplot, lowess, and regression line')lines(lowess(z2),col='red')abline(m2)grid()dev.off()bitmap(file='test3.png')m3 <- lm(m$residuals ~ x)summary(m3)z3 <- as.data.frame(cbind(x,m$residuals))names(z3) <- list('x','Residuals')plot(z3,main='Scatterplot, lowess, and regression line')lines(lowess(z3),col='red')abline(m3)grid()dev.off()bitmap(file='test4.png')m4 <- lm(m$fitted.values ~ m$residuals)summary(m4)z4 <- as.data.frame(cbind(m$residuals,m$fitted.values))names(z4) <- list('Residuals','Fitted')plot(z4,main='Scatterplot, lowess, and regression line')lines(lowess(z4),col='red')abline(m4)grid()dev.off()bitmap(file='test5.png')myr <- as.ts(m$residuals)z5 <- as.data.frame(cbind(lag(myr,1),myr))names(z5) <- list('Lagged Residuals','Residuals')plot(z5,main='Lag plot')m5 <- lm(z5)summary(m5)abline(m5)grid()dev.off()bitmap(file='test6.png')hist(m$residuals,main='Residual Histogram',xlab='Residuals')dev.off()bitmap(file='test7.png')if (par1 > 0){densityplot(~m$residuals,col='black',main=paste('Density Plot bw = ',par1),bw=par1)} else {densityplot(~m$residuals,col='black',main='Density Plot')}dev.off()bitmap(file='test8.png')acf(m$residuals,main='Residual Autocorrelation Function')dev.off()bitmap(file='test9.png')qqnorm(x)qqline(x)grid()dev.off()load(file='createtable')a<-table.start()a<-table.row.start(a)a<-table.element(a,'Simple Linear Regression',5,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'Statistics',1,TRUE)a<-table.element(a,'Estimate',1,TRUE)a<-table.element(a,'S.D.',1,TRUE)a<-table.element(a,'T-STAT (H0: coeff=0)',1,TRUE)a<-table.element(a,'P-value (two-sided)',1,TRUE)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'constant term',header=TRUE)a<-table.element(a,m$coefficients[[1]])sd <- sqrt(vcov(m)[1,1])a<-table.element(a,sd)tstat <- m$coefficients[[1]]/sda<-table.element(a,tstat)pval <- 2*(1-pt(abs(tstat),length(x)-2))a<-table.element(a,pval)a<-table.row.end(a)a<-table.row.start(a)a<-table.element(a,'slope',header=TRUE)a<-table.element(a,m$coefficients[[2]])sd <- sqrt(vcov(m)[2,2])a<-table.element(a,sd)tstat <- m\$coefficients[[2]]/sda<-table.element(a,tstat)pval <- 2*(1-pt(abs(tstat),length(x)-2))a<-table.element(a,pval)a<-table.row.end(a)a<-table.end(a)table.save(a,file='mytable.tab')