Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationTue, 01 Dec 2009 11:44:28 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2009/Dec/01/t1259693135n9f5yqo2w94bb7b.htm/, Retrieved Fri, 09 Dec 2022 23:15:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=62175, Retrieved Fri, 09 Dec 2022 23:15:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact109
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
- RMP   [Classical Decomposition] [] [2009-11-27 14:58:37] [b98453cac15ba1066b407e146608df68]
-    D      [Classical Decomposition] [classical decompo...] [2009-12-01 18:44:28] [4563e36d4b7005634fe3557528d9fcab] [Current]
Feedback Forum

Post a new message
Dataseries X:
7291
6820
8031
7862
7357
7213
7079
7012
7319
8148
7599
6908
7878
7407
7911
7323
7179
6758
6934
6696
7688
8296
7697
7907
7592
7710
9011
8225
7733
8062
7859
8221
8330
8868
9053
8811
8120
7953
8878
8601
8361
9116
9310
9891
10147
10317
10682
10276
10614
9413
11068
9772
10350
10541
10049
10714
10759
11684
11462
10485
11056
10184
11082
10554
11315
10847
11104
11026
11073
12073
12328
11172




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=62175&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=62175&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=62175&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17291NANA1.00943647063753NA
26820NANA0.949251193980407NA
38031NANA1.05807608808546NA
47862NANA0.974612210259552NA
57357NANA0.970649557672554NA
67213NANA0.970953657402055NA
770797081.18181869497411.041666666670.955490757870730.999691884949326
870127268.65747615887459.958333333330.9743563102330280.964689837566203
973197568.415609602177479.416666666671.011899182369680.967045201734728
1081488037.02635302727451.958333333331.078511982155991.01380779931510
1175997789.39574891597422.083333333331.049489125773210.97555705794735
1269087375.543665061367395.708333333330.9972734635597930.936608921824142
1378787440.261806098677370.708333333331.009436470637531.05883370845130
1474076978.420152546967351.50.9492511939804071.06141502490311
1579117780.78294625487353.708333333331.058076088085461.01673572629447
1673237188.008703716767375.250.9746122102595521.01878006856244
1771797168.732308190657385.50.9706495576725541.00143228835559
1867587215.358910166637431.208333333330.9709536574020550.936613144839933
1969347128.83692024377460.916666666670.955490757870730.97266918539118
2066967270.281403342527461.6250.9743563102330280.921009742060535
2176887609.566176351877520.083333333331.011899182369681.01030726612141
2282968200.465856323087603.51.078511982155991.01164984347850
2376978043.459574780177664.166666666671.049489125773210.956926547394298
2479077720.47562427017741.583333333330.9972734635597931.02415970010235
2575927908.387969356827834.458333333331.009436470637530.95999336772769
2677107533.771653158587936.541666666670.9492511939804071.02339178235745
2790118493.000413047338026.833333333331.058076088085461.06099135308611
2882257872.348910687348077.416666666670.9746122102595521.04479617116994
2977337918.316429103288157.750.9706495576725540.976596486038098
3080628012.228668076988251.916666666670.9709536574020551.00621192105030
3178597941.64105827248311.583333333330.955490757870730.989593957008883
3282218129.744865327248343.708333333330.9743563102330281.01122484606644
3383308447.629511683638348.291666666671.011899182369680.986075441457164
3488689014.652526852348358.416666666671.078511982155990.983731760440516
3590538815.97102877648400.251.049489125773211.02688631467253
3688118447.23866083938470.333333333330.9972734635597931.04306275148198
3781208655.623316746268574.708333333331.009436470637530.93811845812306
3879538262.994330800958704.750.9492511939804070.962484019909656
3988789364.017466060028850.041666666671.058076088085460.94809733452318
4086018757.987147918618986.1250.9746122102595520.98207497393326
4183618846.864062211789114.3750.9706495576725540.945080645662107
4291168974.807850183949243.291666666670.9709536574020551.01573205267154
4393108989.49592273739408.250.955490757870731.03565317566384
4498919327.5129578607895730.9743563102330281.06041128483926
45101479840.803873477029725.083333333331.011899182369681.03111495061376
461031710639.65551796669865.1251.078511982155990.969674251443407
471068210491.52414678699996.791666666671.049489125773211.01815521277444
481027610111.397200093710139.04166666670.9972734635597931.0162789371883
491061410325.735957416110229.20833333331.009436470637531.02791704569754
5094139771.8686557658910294.29166666670.9492511939804070.963275329580475
511106810955.407989044210354.08333333331.058076088085461.01027729967413
52977210171.580941215910436.54166666670.9746122102595520.960715945384972
531035010217.0572440613105260.9706495576725541.01301184409199
541054110260.269579779510567.20833333330.9709536574020551.02736092049411
551004910122.787585801810594.33333333330.955490757870730.992710744429202
561071410371.901127891810644.8750.9743563102330281.03298323690998
571075910804.637844684110677.58333333331.011899182369680.995776087515363
581168411551.672212877310710.751.078511982155991.01145529276490
591146211317.209716489010783.54166666671.049489125773211.01279381465381
601048510806.953887865710836.50.9972734635597930.970208636845652
611105610996.001773919410893.20833333331.009436470637531.00545636744284
621018410394.458782617810950.16666666670.9492511939804070.979752790691736
631108211613.707661848110976.251.058076088085460.954217233864534
641055410726.135288853611005.54166666670.9746122102595520.98395178839181
651131510733.281033816811057.83333333330.9706495576725541.05419768329464
661084710799.472510856811122.54166666670.9709536574020551.00440090838654
6711104NANA0.95549075787073NA
6811026NANA0.974356310233028NA
6911073NANA1.01189918236968NA
7012073NANA1.07851198215599NA
7112328NANA1.04948912577321NA
7211172NANA0.997273463559793NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 7291 & NA & NA & 1.00943647063753 & NA \tabularnewline
2 & 6820 & NA & NA & 0.949251193980407 & NA \tabularnewline
3 & 8031 & NA & NA & 1.05807608808546 & NA \tabularnewline
4 & 7862 & NA & NA & 0.974612210259552 & NA \tabularnewline
5 & 7357 & NA & NA & 0.970649557672554 & NA \tabularnewline
6 & 7213 & NA & NA & 0.970953657402055 & NA \tabularnewline
7 & 7079 & 7081.1818186949 & 7411.04166666667 & 0.95549075787073 & 0.999691884949326 \tabularnewline
8 & 7012 & 7268.6574761588 & 7459.95833333333 & 0.974356310233028 & 0.964689837566203 \tabularnewline
9 & 7319 & 7568.41560960217 & 7479.41666666667 & 1.01189918236968 & 0.967045201734728 \tabularnewline
10 & 8148 & 8037.0263530272 & 7451.95833333333 & 1.07851198215599 & 1.01380779931510 \tabularnewline
11 & 7599 & 7789.3957489159 & 7422.08333333333 & 1.04948912577321 & 0.97555705794735 \tabularnewline
12 & 6908 & 7375.54366506136 & 7395.70833333333 & 0.997273463559793 & 0.936608921824142 \tabularnewline
13 & 7878 & 7440.26180609867 & 7370.70833333333 & 1.00943647063753 & 1.05883370845130 \tabularnewline
14 & 7407 & 6978.42015254696 & 7351.5 & 0.949251193980407 & 1.06141502490311 \tabularnewline
15 & 7911 & 7780.7829462548 & 7353.70833333333 & 1.05807608808546 & 1.01673572629447 \tabularnewline
16 & 7323 & 7188.00870371676 & 7375.25 & 0.974612210259552 & 1.01878006856244 \tabularnewline
17 & 7179 & 7168.73230819065 & 7385.5 & 0.970649557672554 & 1.00143228835559 \tabularnewline
18 & 6758 & 7215.35891016663 & 7431.20833333333 & 0.970953657402055 & 0.936613144839933 \tabularnewline
19 & 6934 & 7128.8369202437 & 7460.91666666667 & 0.95549075787073 & 0.97266918539118 \tabularnewline
20 & 6696 & 7270.28140334252 & 7461.625 & 0.974356310233028 & 0.921009742060535 \tabularnewline
21 & 7688 & 7609.56617635187 & 7520.08333333333 & 1.01189918236968 & 1.01030726612141 \tabularnewline
22 & 8296 & 8200.46585632308 & 7603.5 & 1.07851198215599 & 1.01164984347850 \tabularnewline
23 & 7697 & 8043.45957478017 & 7664.16666666667 & 1.04948912577321 & 0.956926547394298 \tabularnewline
24 & 7907 & 7720.4756242701 & 7741.58333333333 & 0.997273463559793 & 1.02415970010235 \tabularnewline
25 & 7592 & 7908.38796935682 & 7834.45833333333 & 1.00943647063753 & 0.95999336772769 \tabularnewline
26 & 7710 & 7533.77165315858 & 7936.54166666667 & 0.949251193980407 & 1.02339178235745 \tabularnewline
27 & 9011 & 8493.00041304733 & 8026.83333333333 & 1.05807608808546 & 1.06099135308611 \tabularnewline
28 & 8225 & 7872.34891068734 & 8077.41666666667 & 0.974612210259552 & 1.04479617116994 \tabularnewline
29 & 7733 & 7918.31642910328 & 8157.75 & 0.970649557672554 & 0.976596486038098 \tabularnewline
30 & 8062 & 8012.22866807698 & 8251.91666666667 & 0.970953657402055 & 1.00621192105030 \tabularnewline
31 & 7859 & 7941.6410582724 & 8311.58333333333 & 0.95549075787073 & 0.989593957008883 \tabularnewline
32 & 8221 & 8129.74486532724 & 8343.70833333333 & 0.974356310233028 & 1.01122484606644 \tabularnewline
33 & 8330 & 8447.62951168363 & 8348.29166666667 & 1.01189918236968 & 0.986075441457164 \tabularnewline
34 & 8868 & 9014.65252685234 & 8358.41666666667 & 1.07851198215599 & 0.983731760440516 \tabularnewline
35 & 9053 & 8815.9710287764 & 8400.25 & 1.04948912577321 & 1.02688631467253 \tabularnewline
36 & 8811 & 8447.2386608393 & 8470.33333333333 & 0.997273463559793 & 1.04306275148198 \tabularnewline
37 & 8120 & 8655.62331674626 & 8574.70833333333 & 1.00943647063753 & 0.93811845812306 \tabularnewline
38 & 7953 & 8262.99433080095 & 8704.75 & 0.949251193980407 & 0.962484019909656 \tabularnewline
39 & 8878 & 9364.01746606002 & 8850.04166666667 & 1.05807608808546 & 0.94809733452318 \tabularnewline
40 & 8601 & 8757.98714791861 & 8986.125 & 0.974612210259552 & 0.98207497393326 \tabularnewline
41 & 8361 & 8846.86406221178 & 9114.375 & 0.970649557672554 & 0.945080645662107 \tabularnewline
42 & 9116 & 8974.80785018394 & 9243.29166666667 & 0.970953657402055 & 1.01573205267154 \tabularnewline
43 & 9310 & 8989.4959227373 & 9408.25 & 0.95549075787073 & 1.03565317566384 \tabularnewline
44 & 9891 & 9327.51295786078 & 9573 & 0.974356310233028 & 1.06041128483926 \tabularnewline
45 & 10147 & 9840.80387347702 & 9725.08333333333 & 1.01189918236968 & 1.03111495061376 \tabularnewline
46 & 10317 & 10639.6555179666 & 9865.125 & 1.07851198215599 & 0.969674251443407 \tabularnewline
47 & 10682 & 10491.5241467869 & 9996.79166666667 & 1.04948912577321 & 1.01815521277444 \tabularnewline
48 & 10276 & 10111.3972000937 & 10139.0416666667 & 0.997273463559793 & 1.0162789371883 \tabularnewline
49 & 10614 & 10325.7359574161 & 10229.2083333333 & 1.00943647063753 & 1.02791704569754 \tabularnewline
50 & 9413 & 9771.86865576589 & 10294.2916666667 & 0.949251193980407 & 0.963275329580475 \tabularnewline
51 & 11068 & 10955.4079890442 & 10354.0833333333 & 1.05807608808546 & 1.01027729967413 \tabularnewline
52 & 9772 & 10171.5809412159 & 10436.5416666667 & 0.974612210259552 & 0.960715945384972 \tabularnewline
53 & 10350 & 10217.0572440613 & 10526 & 0.970649557672554 & 1.01301184409199 \tabularnewline
54 & 10541 & 10260.2695797795 & 10567.2083333333 & 0.970953657402055 & 1.02736092049411 \tabularnewline
55 & 10049 & 10122.7875858018 & 10594.3333333333 & 0.95549075787073 & 0.992710744429202 \tabularnewline
56 & 10714 & 10371.9011278918 & 10644.875 & 0.974356310233028 & 1.03298323690998 \tabularnewline
57 & 10759 & 10804.6378446841 & 10677.5833333333 & 1.01189918236968 & 0.995776087515363 \tabularnewline
58 & 11684 & 11551.6722128773 & 10710.75 & 1.07851198215599 & 1.01145529276490 \tabularnewline
59 & 11462 & 11317.2097164890 & 10783.5416666667 & 1.04948912577321 & 1.01279381465381 \tabularnewline
60 & 10485 & 10806.9538878657 & 10836.5 & 0.997273463559793 & 0.970208636845652 \tabularnewline
61 & 11056 & 10996.0017739194 & 10893.2083333333 & 1.00943647063753 & 1.00545636744284 \tabularnewline
62 & 10184 & 10394.4587826178 & 10950.1666666667 & 0.949251193980407 & 0.979752790691736 \tabularnewline
63 & 11082 & 11613.7076618481 & 10976.25 & 1.05807608808546 & 0.954217233864534 \tabularnewline
64 & 10554 & 10726.1352888536 & 11005.5416666667 & 0.974612210259552 & 0.98395178839181 \tabularnewline
65 & 11315 & 10733.2810338168 & 11057.8333333333 & 0.970649557672554 & 1.05419768329464 \tabularnewline
66 & 10847 & 10799.4725108568 & 11122.5416666667 & 0.970953657402055 & 1.00440090838654 \tabularnewline
67 & 11104 & NA & NA & 0.95549075787073 & NA \tabularnewline
68 & 11026 & NA & NA & 0.974356310233028 & NA \tabularnewline
69 & 11073 & NA & NA & 1.01189918236968 & NA \tabularnewline
70 & 12073 & NA & NA & 1.07851198215599 & NA \tabularnewline
71 & 12328 & NA & NA & 1.04948912577321 & NA \tabularnewline
72 & 11172 & NA & NA & 0.997273463559793 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=62175&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]7291[/C][C]NA[/C][C]NA[/C][C]1.00943647063753[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]6820[/C][C]NA[/C][C]NA[/C][C]0.949251193980407[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]8031[/C][C]NA[/C][C]NA[/C][C]1.05807608808546[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]7862[/C][C]NA[/C][C]NA[/C][C]0.974612210259552[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]7357[/C][C]NA[/C][C]NA[/C][C]0.970649557672554[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]7213[/C][C]NA[/C][C]NA[/C][C]0.970953657402055[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]7079[/C][C]7081.1818186949[/C][C]7411.04166666667[/C][C]0.95549075787073[/C][C]0.999691884949326[/C][/ROW]
[ROW][C]8[/C][C]7012[/C][C]7268.6574761588[/C][C]7459.95833333333[/C][C]0.974356310233028[/C][C]0.964689837566203[/C][/ROW]
[ROW][C]9[/C][C]7319[/C][C]7568.41560960217[/C][C]7479.41666666667[/C][C]1.01189918236968[/C][C]0.967045201734728[/C][/ROW]
[ROW][C]10[/C][C]8148[/C][C]8037.0263530272[/C][C]7451.95833333333[/C][C]1.07851198215599[/C][C]1.01380779931510[/C][/ROW]
[ROW][C]11[/C][C]7599[/C][C]7789.3957489159[/C][C]7422.08333333333[/C][C]1.04948912577321[/C][C]0.97555705794735[/C][/ROW]
[ROW][C]12[/C][C]6908[/C][C]7375.54366506136[/C][C]7395.70833333333[/C][C]0.997273463559793[/C][C]0.936608921824142[/C][/ROW]
[ROW][C]13[/C][C]7878[/C][C]7440.26180609867[/C][C]7370.70833333333[/C][C]1.00943647063753[/C][C]1.05883370845130[/C][/ROW]
[ROW][C]14[/C][C]7407[/C][C]6978.42015254696[/C][C]7351.5[/C][C]0.949251193980407[/C][C]1.06141502490311[/C][/ROW]
[ROW][C]15[/C][C]7911[/C][C]7780.7829462548[/C][C]7353.70833333333[/C][C]1.05807608808546[/C][C]1.01673572629447[/C][/ROW]
[ROW][C]16[/C][C]7323[/C][C]7188.00870371676[/C][C]7375.25[/C][C]0.974612210259552[/C][C]1.01878006856244[/C][/ROW]
[ROW][C]17[/C][C]7179[/C][C]7168.73230819065[/C][C]7385.5[/C][C]0.970649557672554[/C][C]1.00143228835559[/C][/ROW]
[ROW][C]18[/C][C]6758[/C][C]7215.35891016663[/C][C]7431.20833333333[/C][C]0.970953657402055[/C][C]0.936613144839933[/C][/ROW]
[ROW][C]19[/C][C]6934[/C][C]7128.8369202437[/C][C]7460.91666666667[/C][C]0.95549075787073[/C][C]0.97266918539118[/C][/ROW]
[ROW][C]20[/C][C]6696[/C][C]7270.28140334252[/C][C]7461.625[/C][C]0.974356310233028[/C][C]0.921009742060535[/C][/ROW]
[ROW][C]21[/C][C]7688[/C][C]7609.56617635187[/C][C]7520.08333333333[/C][C]1.01189918236968[/C][C]1.01030726612141[/C][/ROW]
[ROW][C]22[/C][C]8296[/C][C]8200.46585632308[/C][C]7603.5[/C][C]1.07851198215599[/C][C]1.01164984347850[/C][/ROW]
[ROW][C]23[/C][C]7697[/C][C]8043.45957478017[/C][C]7664.16666666667[/C][C]1.04948912577321[/C][C]0.956926547394298[/C][/ROW]
[ROW][C]24[/C][C]7907[/C][C]7720.4756242701[/C][C]7741.58333333333[/C][C]0.997273463559793[/C][C]1.02415970010235[/C][/ROW]
[ROW][C]25[/C][C]7592[/C][C]7908.38796935682[/C][C]7834.45833333333[/C][C]1.00943647063753[/C][C]0.95999336772769[/C][/ROW]
[ROW][C]26[/C][C]7710[/C][C]7533.77165315858[/C][C]7936.54166666667[/C][C]0.949251193980407[/C][C]1.02339178235745[/C][/ROW]
[ROW][C]27[/C][C]9011[/C][C]8493.00041304733[/C][C]8026.83333333333[/C][C]1.05807608808546[/C][C]1.06099135308611[/C][/ROW]
[ROW][C]28[/C][C]8225[/C][C]7872.34891068734[/C][C]8077.41666666667[/C][C]0.974612210259552[/C][C]1.04479617116994[/C][/ROW]
[ROW][C]29[/C][C]7733[/C][C]7918.31642910328[/C][C]8157.75[/C][C]0.970649557672554[/C][C]0.976596486038098[/C][/ROW]
[ROW][C]30[/C][C]8062[/C][C]8012.22866807698[/C][C]8251.91666666667[/C][C]0.970953657402055[/C][C]1.00621192105030[/C][/ROW]
[ROW][C]31[/C][C]7859[/C][C]7941.6410582724[/C][C]8311.58333333333[/C][C]0.95549075787073[/C][C]0.989593957008883[/C][/ROW]
[ROW][C]32[/C][C]8221[/C][C]8129.74486532724[/C][C]8343.70833333333[/C][C]0.974356310233028[/C][C]1.01122484606644[/C][/ROW]
[ROW][C]33[/C][C]8330[/C][C]8447.62951168363[/C][C]8348.29166666667[/C][C]1.01189918236968[/C][C]0.986075441457164[/C][/ROW]
[ROW][C]34[/C][C]8868[/C][C]9014.65252685234[/C][C]8358.41666666667[/C][C]1.07851198215599[/C][C]0.983731760440516[/C][/ROW]
[ROW][C]35[/C][C]9053[/C][C]8815.9710287764[/C][C]8400.25[/C][C]1.04948912577321[/C][C]1.02688631467253[/C][/ROW]
[ROW][C]36[/C][C]8811[/C][C]8447.2386608393[/C][C]8470.33333333333[/C][C]0.997273463559793[/C][C]1.04306275148198[/C][/ROW]
[ROW][C]37[/C][C]8120[/C][C]8655.62331674626[/C][C]8574.70833333333[/C][C]1.00943647063753[/C][C]0.93811845812306[/C][/ROW]
[ROW][C]38[/C][C]7953[/C][C]8262.99433080095[/C][C]8704.75[/C][C]0.949251193980407[/C][C]0.962484019909656[/C][/ROW]
[ROW][C]39[/C][C]8878[/C][C]9364.01746606002[/C][C]8850.04166666667[/C][C]1.05807608808546[/C][C]0.94809733452318[/C][/ROW]
[ROW][C]40[/C][C]8601[/C][C]8757.98714791861[/C][C]8986.125[/C][C]0.974612210259552[/C][C]0.98207497393326[/C][/ROW]
[ROW][C]41[/C][C]8361[/C][C]8846.86406221178[/C][C]9114.375[/C][C]0.970649557672554[/C][C]0.945080645662107[/C][/ROW]
[ROW][C]42[/C][C]9116[/C][C]8974.80785018394[/C][C]9243.29166666667[/C][C]0.970953657402055[/C][C]1.01573205267154[/C][/ROW]
[ROW][C]43[/C][C]9310[/C][C]8989.4959227373[/C][C]9408.25[/C][C]0.95549075787073[/C][C]1.03565317566384[/C][/ROW]
[ROW][C]44[/C][C]9891[/C][C]9327.51295786078[/C][C]9573[/C][C]0.974356310233028[/C][C]1.06041128483926[/C][/ROW]
[ROW][C]45[/C][C]10147[/C][C]9840.80387347702[/C][C]9725.08333333333[/C][C]1.01189918236968[/C][C]1.03111495061376[/C][/ROW]
[ROW][C]46[/C][C]10317[/C][C]10639.6555179666[/C][C]9865.125[/C][C]1.07851198215599[/C][C]0.969674251443407[/C][/ROW]
[ROW][C]47[/C][C]10682[/C][C]10491.5241467869[/C][C]9996.79166666667[/C][C]1.04948912577321[/C][C]1.01815521277444[/C][/ROW]
[ROW][C]48[/C][C]10276[/C][C]10111.3972000937[/C][C]10139.0416666667[/C][C]0.997273463559793[/C][C]1.0162789371883[/C][/ROW]
[ROW][C]49[/C][C]10614[/C][C]10325.7359574161[/C][C]10229.2083333333[/C][C]1.00943647063753[/C][C]1.02791704569754[/C][/ROW]
[ROW][C]50[/C][C]9413[/C][C]9771.86865576589[/C][C]10294.2916666667[/C][C]0.949251193980407[/C][C]0.963275329580475[/C][/ROW]
[ROW][C]51[/C][C]11068[/C][C]10955.4079890442[/C][C]10354.0833333333[/C][C]1.05807608808546[/C][C]1.01027729967413[/C][/ROW]
[ROW][C]52[/C][C]9772[/C][C]10171.5809412159[/C][C]10436.5416666667[/C][C]0.974612210259552[/C][C]0.960715945384972[/C][/ROW]
[ROW][C]53[/C][C]10350[/C][C]10217.0572440613[/C][C]10526[/C][C]0.970649557672554[/C][C]1.01301184409199[/C][/ROW]
[ROW][C]54[/C][C]10541[/C][C]10260.2695797795[/C][C]10567.2083333333[/C][C]0.970953657402055[/C][C]1.02736092049411[/C][/ROW]
[ROW][C]55[/C][C]10049[/C][C]10122.7875858018[/C][C]10594.3333333333[/C][C]0.95549075787073[/C][C]0.992710744429202[/C][/ROW]
[ROW][C]56[/C][C]10714[/C][C]10371.9011278918[/C][C]10644.875[/C][C]0.974356310233028[/C][C]1.03298323690998[/C][/ROW]
[ROW][C]57[/C][C]10759[/C][C]10804.6378446841[/C][C]10677.5833333333[/C][C]1.01189918236968[/C][C]0.995776087515363[/C][/ROW]
[ROW][C]58[/C][C]11684[/C][C]11551.6722128773[/C][C]10710.75[/C][C]1.07851198215599[/C][C]1.01145529276490[/C][/ROW]
[ROW][C]59[/C][C]11462[/C][C]11317.2097164890[/C][C]10783.5416666667[/C][C]1.04948912577321[/C][C]1.01279381465381[/C][/ROW]
[ROW][C]60[/C][C]10485[/C][C]10806.9538878657[/C][C]10836.5[/C][C]0.997273463559793[/C][C]0.970208636845652[/C][/ROW]
[ROW][C]61[/C][C]11056[/C][C]10996.0017739194[/C][C]10893.2083333333[/C][C]1.00943647063753[/C][C]1.00545636744284[/C][/ROW]
[ROW][C]62[/C][C]10184[/C][C]10394.4587826178[/C][C]10950.1666666667[/C][C]0.949251193980407[/C][C]0.979752790691736[/C][/ROW]
[ROW][C]63[/C][C]11082[/C][C]11613.7076618481[/C][C]10976.25[/C][C]1.05807608808546[/C][C]0.954217233864534[/C][/ROW]
[ROW][C]64[/C][C]10554[/C][C]10726.1352888536[/C][C]11005.5416666667[/C][C]0.974612210259552[/C][C]0.98395178839181[/C][/ROW]
[ROW][C]65[/C][C]11315[/C][C]10733.2810338168[/C][C]11057.8333333333[/C][C]0.970649557672554[/C][C]1.05419768329464[/C][/ROW]
[ROW][C]66[/C][C]10847[/C][C]10799.4725108568[/C][C]11122.5416666667[/C][C]0.970953657402055[/C][C]1.00440090838654[/C][/ROW]
[ROW][C]67[/C][C]11104[/C][C]NA[/C][C]NA[/C][C]0.95549075787073[/C][C]NA[/C][/ROW]
[ROW][C]68[/C][C]11026[/C][C]NA[/C][C]NA[/C][C]0.974356310233028[/C][C]NA[/C][/ROW]
[ROW][C]69[/C][C]11073[/C][C]NA[/C][C]NA[/C][C]1.01189918236968[/C][C]NA[/C][/ROW]
[ROW][C]70[/C][C]12073[/C][C]NA[/C][C]NA[/C][C]1.07851198215599[/C][C]NA[/C][/ROW]
[ROW][C]71[/C][C]12328[/C][C]NA[/C][C]NA[/C][C]1.04948912577321[/C][C]NA[/C][/ROW]
[ROW][C]72[/C][C]11172[/C][C]NA[/C][C]NA[/C][C]0.997273463559793[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=62175&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=62175&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17291NANA1.00943647063753NA
26820NANA0.949251193980407NA
38031NANA1.05807608808546NA
47862NANA0.974612210259552NA
57357NANA0.970649557672554NA
67213NANA0.970953657402055NA
770797081.18181869497411.041666666670.955490757870730.999691884949326
870127268.65747615887459.958333333330.9743563102330280.964689837566203
973197568.415609602177479.416666666671.011899182369680.967045201734728
1081488037.02635302727451.958333333331.078511982155991.01380779931510
1175997789.39574891597422.083333333331.049489125773210.97555705794735
1269087375.543665061367395.708333333330.9972734635597930.936608921824142
1378787440.261806098677370.708333333331.009436470637531.05883370845130
1474076978.420152546967351.50.9492511939804071.06141502490311
1579117780.78294625487353.708333333331.058076088085461.01673572629447
1673237188.008703716767375.250.9746122102595521.01878006856244
1771797168.732308190657385.50.9706495576725541.00143228835559
1867587215.358910166637431.208333333330.9709536574020550.936613144839933
1969347128.83692024377460.916666666670.955490757870730.97266918539118
2066967270.281403342527461.6250.9743563102330280.921009742060535
2176887609.566176351877520.083333333331.011899182369681.01030726612141
2282968200.465856323087603.51.078511982155991.01164984347850
2376978043.459574780177664.166666666671.049489125773210.956926547394298
2479077720.47562427017741.583333333330.9972734635597931.02415970010235
2575927908.387969356827834.458333333331.009436470637530.95999336772769
2677107533.771653158587936.541666666670.9492511939804071.02339178235745
2790118493.000413047338026.833333333331.058076088085461.06099135308611
2882257872.348910687348077.416666666670.9746122102595521.04479617116994
2977337918.316429103288157.750.9706495576725540.976596486038098
3080628012.228668076988251.916666666670.9709536574020551.00621192105030
3178597941.64105827248311.583333333330.955490757870730.989593957008883
3282218129.744865327248343.708333333330.9743563102330281.01122484606644
3383308447.629511683638348.291666666671.011899182369680.986075441457164
3488689014.652526852348358.416666666671.078511982155990.983731760440516
3590538815.97102877648400.251.049489125773211.02688631467253
3688118447.23866083938470.333333333330.9972734635597931.04306275148198
3781208655.623316746268574.708333333331.009436470637530.93811845812306
3879538262.994330800958704.750.9492511939804070.962484019909656
3988789364.017466060028850.041666666671.058076088085460.94809733452318
4086018757.987147918618986.1250.9746122102595520.98207497393326
4183618846.864062211789114.3750.9706495576725540.945080645662107
4291168974.807850183949243.291666666670.9709536574020551.01573205267154
4393108989.49592273739408.250.955490757870731.03565317566384
4498919327.5129578607895730.9743563102330281.06041128483926
45101479840.803873477029725.083333333331.011899182369681.03111495061376
461031710639.65551796669865.1251.078511982155990.969674251443407
471068210491.52414678699996.791666666671.049489125773211.01815521277444
481027610111.397200093710139.04166666670.9972734635597931.0162789371883
491061410325.735957416110229.20833333331.009436470637531.02791704569754
5094139771.8686557658910294.29166666670.9492511939804070.963275329580475
511106810955.407989044210354.08333333331.058076088085461.01027729967413
52977210171.580941215910436.54166666670.9746122102595520.960715945384972
531035010217.0572440613105260.9706495576725541.01301184409199
541054110260.269579779510567.20833333330.9709536574020551.02736092049411
551004910122.787585801810594.33333333330.955490757870730.992710744429202
561071410371.901127891810644.8750.9743563102330281.03298323690998
571075910804.637844684110677.58333333331.011899182369680.995776087515363
581168411551.672212877310710.751.078511982155991.01145529276490
591146211317.209716489010783.54166666671.049489125773211.01279381465381
601048510806.953887865710836.50.9972734635597930.970208636845652
611105610996.001773919410893.20833333331.009436470637531.00545636744284
621018410394.458782617810950.16666666670.9492511939804070.979752790691736
631108211613.707661848110976.251.058076088085460.954217233864534
641055410726.135288853611005.54166666670.9746122102595520.98395178839181
651131510733.281033816811057.83333333330.9706495576725541.05419768329464
661084710799.472510856811122.54166666670.9709536574020551.00440090838654
6711104NANA0.95549075787073NA
6811026NANA0.974356310233028NA
6911073NANA1.01189918236968NA
7012073NANA1.07851198215599NA
7112328NANA1.04948912577321NA
7211172NANA0.997273463559793NA



Parameters (Session):
par1 = multiplicative ; par2 = 12 ;
Parameters (R input):
par1 = multiplicative ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,m$trend[i]+m$seasonal[i]) else a<-table.element(a,m$trend[i]*m$seasonal[i])
a<-table.element(a,m$trend[i])
a<-table.element(a,m$seasonal[i])
a<-table.element(a,m$random[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')