Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationMon, 03 Nov 2008 12:04:19 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/03/t12257390934mc1alqwx5vvfut.htm/, Retrieved Mon, 20 May 2024 09:28:00 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=20996, Retrieved Mon, 20 May 2024 09:28:00 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact198
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Blocked Bootstrap Plot - Central Tendency] [workshop 3] [2007-10-26 12:36:24] [e9ffc5de6f8a7be62f22b142b5b6b1a8]
F    D    [Blocked Bootstrap Plot - Central Tendency] [Q4] [2008-11-03 19:04:19] [b0654df83a8a0e1de3ceb7bf60f0d58f] [Current]
Feedback Forum
2008-11-07 15:08:54 [Stijn Van de Velde] [reply
Op deze vraag is er geen juist antwoord.

Je kan de midrange nemen, hier is het plot het kleinst. Dat wil zeggen dat de mediaan minder sterk kan flucturen en de betrouwbaarheid dus groot is.
De midrange heeft wel als nadeel dat er veel outliers aanwezig zijn.

Daarom kan je ook de mean nemen, deze heeft weliswaar de grootste spreiding, maar heeft het ook kleinst risico op outliers.
2008-11-10 11:14:57 [Glenn De Maeyer] [reply
De student maakte hier gebruik van de bootstrap methode. Een bootstrap is een berekening waarbij het gemiddelde van een dataset 500 keer opnieuw berekend wordt met per keer een observatie die er wordt uitgenomen. Er wordt gewerkt met teruglegging. Dit houdt in dat dezelfde observatie er meerdere keren kan worden uitgenomen.
We zien hier dat de midrange de kleinste spreiding vertoont en dus als beste schatter kan beschouwd worden. De enige opmerking is dat er hier outliers zijn. Je kan dus ook de mean nemen.
2008-11-11 09:15:27 [Jeroen Michel] [reply
De uitleg van vorige studenten is correct. De methode die de student gebruikt wordt correct uitgelegd.

Bootstrapping: gem. Dataset ïƒ 500 x opnieuw
Telkens 1 eruit nemen en een andere terugleggen ( er bestaat dan natuurlijk de kans dat je hetzelfde terug neemt)
Simulation of mean: Alle punten zijn alle berekende gemiddelden, door elkaar.
Simulation of median: meer een patroon
Imulation of midrange: duidelijk patroon
Hoe minder variatie, hoe nauwkeuriger
Midrange als gemiddelde nemen omdat daar de variatie het kleinst is
Maar: daar zijn wel heel veel outliers!!! Je hebt een gemiddelde waarvan de getrouwheidsinterval zeer klein is, maar als je er buiten zit, zit je er wel extreem buiten. Je moet maw zelf een overweging doen. Dwz dat de mean ook goed kan zijn. Het heeft een groter getrouwheidsinterval, maar de outliers zijn minder extreem.
De punten op de grafiek zij gemiddelden, dus je kan ze niet vinden in je dataset
Outliers zijn dus WEL relevant! .. ze bepalen de keuze, MAAR het gaat over gemiddelden

Post a new message
Dataseries X:
109.20
88.60
94.30
98.30
86.40
80.60
104.10
108.20
93.40
71.90
94.10
94.90
96.40
91.10
84.40
86.40
88.00
75.10
109.70
103.00
82.10
68.00
96.40
94.30
90.00
88.00
76.10
82.50
81.40
66.50
97.20
94.10
80.70
70.50
87.80
89.50
99.60
84.20
75.10
92.00
80.80
73.10
99.80
90.00
83.10
72.40
78.80
87.30
91.00
80.10
73.60
86.40
74.50
71.20
92.40
81.50
85.30
69.90
84.20
90.70
100.30




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 4 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=20996&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]4 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=20996&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=20996&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean85.615573770491886.893442622950888.12049180327871.703703035833672.50491803278689
median86.487.3881.922730554594461.59999999999999
midrange88.188.188.851.041238255255930.75

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 85.6155737704918 & 86.8934426229508 & 88.1204918032787 & 1.70370303583367 & 2.50491803278689 \tabularnewline
median & 86.4 & 87.3 & 88 & 1.92273055459446 & 1.59999999999999 \tabularnewline
midrange & 88.1 & 88.1 & 88.85 & 1.04123825525593 & 0.75 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=20996&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]85.6155737704918[/C][C]86.8934426229508[/C][C]88.1204918032787[/C][C]1.70370303583367[/C][C]2.50491803278689[/C][/ROW]
[ROW][C]median[/C][C]86.4[/C][C]87.3[/C][C]88[/C][C]1.92273055459446[/C][C]1.59999999999999[/C][/ROW]
[ROW][C]midrange[/C][C]88.1[/C][C]88.1[/C][C]88.85[/C][C]1.04123825525593[/C][C]0.75[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=20996&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=20996&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean85.615573770491886.893442622950888.12049180327871.703703035833672.50491803278689
median86.487.3881.922730554594461.59999999999999
midrange88.188.188.851.041238255255930.75



Parameters (Session):
par1 = 500 ; par2 = 12 ;
Parameters (R input):
par1 = 500 ; par2 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
c(s.mean, s.median, s.midrange)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3]))
colnames(z) <- list('mean','median','midrange')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[1])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,1])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[2])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,2])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[3])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,3])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')