Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationTue, 16 Dec 2008 09:13:24 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/16/t1229444137yz48v099qq9s18m.htm/, Retrieved Wed, 15 May 2024 15:34:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=34002, Retrieved Wed, 15 May 2024 15:34:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact152
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [ARIMA Forecasting] [Vincent Dolhain T...] [2008-12-16 16:13:24] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum
2008-12-22 18:17:50 [Jasmine Hendrikx] [reply
Evaluatie:
Stap 1: De berekening is goed gemaakt. Wat de student zegt in de conclusie is juist, maar geen antwoord op de vraag. Met ARIMA forecasting gaat men de tijdreeks iets korter gaat maken. De 12 laatste maanden laat je wegvallen. En daarna wordt er een voorspelling gemaakt van 12 maanden vooruit op basis van gegevens uit het verleden. Vervolgens vergelijk je de geschatte waarden met de werkelijke waarden, zoals de student correct vermeldt. Er wordt gevraagd of er een indicatie is of de AR processen niet stabiel zijn en of de MA processen niet omkeerbaar zijn. Als de AR processen stabiel zijn, wordt er verondersteld dat de parameters van het AR proces binnen het aanvaarde gebied van de parametercombinaties liggen dat resulteert in een niet-explosieve voorspelling.
Als de MA processen omkeerbaar zijn , wordt er verondersteld dat de parameters van het MA proces binnen het aanvaarde gebied van de parametercombinaties liggen dat resulteert in een niet-explosieve voorspelling. Wanneer bijvoorbeeld de parameter phi buiten een bepaalde waarde valt (dus groter dan 1 of kleiner dan -1) zal de tijdreeks een explosief karakter vertonen. Dus eigenlijk kun je al op voorhand weten of de tijdreeks explosief is of niet (aan de hand van de parameters die de computer heeft berekend via de Backward Selection method). Je moet gebruik maken van de eerste grafiek die de berekening genereert (of de tweede grafiek) om te kijken of de voorspelling explosief is of niet. Wanneer de lijn van de werkelijke waarden in het betrouwbaarheidsinterval ligt dan is er geen sprake van explosiviteit. Wanneer echter de werkelijke waarden serieus buiten het betrouwbaarheidsinterval vallen, en naar + of – oneindig gaan, dan kunnen we van een explosieve voorspelling spreken. Wanneer er dus geen explosieve voorspelling is, dan kunnen we zeggen dat de AR processen stabiel zijn en de MA processen omkeerbaar (invertible). In de eerste grafiek kunnen we zien dat de werkelijke waarden niet buiten het betrouwbaarheidsinterval lijken te vallen, dus we kunnen niet spreken van een explosieve voorspelling. Bijgevolg kunnen we zeggen dat de AR processen stabiel zijn en de MA processen omkeerbaar.

Stap 2: Er is wel gebruik gemaakt van de juiste output, maar er is echter geen duidelijk antwoord op de vraag gegeven. Wanneer je in de verleden waarden een duidelijk patroon ziet dat herhaald wordt in de voorspelde waarden (bepaalde pieken die overeenkomen met seizoenale periodes) dan is dit een indicatie van seizoenaliteit.
Om te weten of er een conjunctuurcyclus aanwezig is, moet je ook naar de grafiek kijken.
Wanneer je een bergparabool (dus eerst stijging, daarna redelijk gelijklopend en daarna daling) kan tekenen door de verleden waarden en de voorspelde waarden zetten deze trend verder , dan zou je kunnen spreken van een conjunctuurcyclus. Conjunctuur gaat namelijk over de op- en neergaande beweging van de economie.
In de grafieken in het document is er zeker geen sprake van een conjunctuurcyclus. We zien wel duidelijk een trend (stijgend) en een zeer kenmerkend patroon dat telkens terugkomt. Dit kan wijzen op seizoenaliteit.

Stap 3: Er is gebruik gemaakt van de juiste tabel om de vraag op te lossen. Er mocht echter iets meer uitleg gegeven worden.
De voorspelde standaardfout (% SE) wordt berekend op basis van het model. Het is een theoretische schatting van de gemaakte fout op basis van het model en de theoretische assumpties. In de tweede kolom zien we de werkelijke fout.
We moeten de werkelijke fout vergelijken met de geschatte fout. Normaal is de absolute waarde van de werkelijke fout kleiner dan de fout die je voorspeld hebt.
Wanneer dit niet het geval is, dus wanneer de voorspelde standaardfout kleiner is dan de absolute waarde van de werkelijke fout, kan dit twee verklaringen hebben.
Oftewel wil dit zeggen dat de werkelijke fout overschat is (door bijvoorbeeld een outlier die een serieuze invloed heeft). Oftewel wil dit zeggen dat er in die maand iets uitzonderlijks gebeurd moet zijn, iets exceptioneels. Er zou dus een economische reden moeten zijn aangezien we uitgingen van een Ceteris Paribus-veronderstelling. De geschatte standaardfout stijgt doorheen de tijd, want hoe meer we in de toekomst voorspellen, hoe groter de afwijking zal zijn en hoe groter de kans is dat we fouten maken. Uit de tabel kunnen we afleiden dat de geschatte standaardfout in de eerste maand 4.8% is. In de laatste periode bedraagt deze fout 12%. Dit is theoretisch dus een goed model. We zien dat in alle gevallen de absolute waarde van de werkelijke fout kleiner is dan de geschatte standaardfout, behalve in de derde maand (periode 135). De geschatte standaardfout is namelijk 6% en de werkelijke fout is 12%. Dit is toch een groot verschil en kunnen we nader onderzoeken door in de eerste tabel te kijken. Hier zien we dat de p-waarde in die periode zeer laag is en kleiner dan 5%, waardoor we kunnen stellen dat er een significant verschil is tussen de werkelijke waarde en de voorspelde waarde. In deze periode zal er dus waarschijnlijk iets exceptioneels gebeurd zijn, er zal een economische reden achterzitten. Aan de hand van deze tabel zouden we dus kunnen zeggen dat er 11 van de 12 periodes goed voorspeld kunnen worden.

Stap 4: Deze vraag werd niet besproken.
Om deze vraag op te lossen, moet je eigenlijk kijken naar de laatste drie kolommen van de eerste tabel.
Kolom 7 (F(t) > y(t-1)) van tabel 1 geeft de waarschijnlijkheid/ kans weer dat de voorspelde waarde groter is dan de werkelijke waarde van de vorige periode (dus 1 periode vroeger). Dus wat is de waarschijnlijkheid dat er een stijging zal zijn? Uit de tabel kunnen we zien dat er zowel periodes zijn met een grotere kans op een stijging (groter dan 50%) dan andere periodes.
De voorlaatste kolom geeft de kans weer dat in een bepaalde maand de voorspelde waarde groter is dan dezelfde maand vorig jaar. Zo kun je dus onderzoeken of er wel degelijk een stijging is ten opzichte van vorig jaar en kan je een stijgende trend voorspellen. We kunnen uit de tabel afleiden dat we zeker van een stijgende trend kunnen spreken, aangezien de kansen zeer hoog liggen (meestal meer dan 90%) dat de voorspelde waarden groter zullen zijn dan dezelfde maand vorig jaar.
De laatste kolom geeft de kans/ waarschijnlijkheid weer dat de voorspelde waarde groter is ten opzichte van de laatst gekende waarde. Deze vinden we terug bij de 132ste observatie. Dus als we 1,2,3,.. maanden vooruitkijken, wat is dan de waarschijnlijkheid dat de voorspelde waarde hoger zal zijn dan de laatst gekende waarde? De kansen zijn in de meeste maanden zeer hoog, waardoor we kunnen zeggen dat er waarschijnlijk een stijging zal plaatsvinden.
Ook wordt er gevraagd wat juist de onderliggende assumptie is. Het model dat berekend wordt, gaat uit van een normaalverdeling. Alle residu’s moeten normaal verdeeld zijn. Dit kun je nazien door te kijken naar de density plot, de QQ-plot, etc.. van de residu’s die berekend zijn met behulp van de Backward Selection Method. Zo kun je zien of deze assumptie vervuld is. Wanneer dit niet het geval blijkt te zijn, zullen de p-waarde, de waarschijnlijkheden en eigenlijk alles dat berekend is, anders zijn, omdat het model dus van een normaalverdeling uitgaat.

Stap 5: Het antwoord van de student bevat goede dingen, maar is onvolledig. Om deze vraag op te lossen kan je onder andere ook naar de grafiek kijken waar de werkelijke en voorspelde waarden mooi uitvergroot zijn. Als er dan vreemde dingen zijn, kun je dit nakijken in de eerste tabel. In de eerste tabel moet je gebruik maken van de kolommen Y(t), F(t) en de p-waarde. Als de p-waarde groter is dan 5%, wil dit zeggen dat het verschil tussen de voorspelde waarde en de werkelijke waarde niet significant is. Wanneer dit kleiner is dan 5%, wil dit zeggen dat het verschil tussen de voorspelde waarde en de werkelijke waarde wel significant is.
Dit kan je dan ook vergelijken met de voorspelde theoretische standaardafwijking.
Het is inderdaad zo dat we uit de grafiek kunnen zien dat de werkelijke waarden mooi in het betrouwbaarheidsinterval liggen, maar in maand 135 lijkt de werkelijke waarde net iets buiten het betrouwbaarheidsinterval te vallen. Dit kijken we dan na in de eerste tabel en het blijkt daar inderdaad dat de p-waarde kleiner is dan 5%, zodat er een significant verschil is tussen de werkelijke en de voorspelde waarde. Dit kijken we dan na in de tabel met de standaardfouten en we kunnen inderdaad zien dat de werkelijke fout daar groter is dan de geschatte standaardfout, zoals hiervoor al werd geconcludeerd. Dit zou dan verklaard kunnen worden doordat er in deze maand een exceptionele gebeurtenis is geweest, hier zou dan bijvoorbeeld een economische reden achter kunnen zitten.
2008-12-24 10:38:08 [c00776cbed2786c9c4960950021bd861] [reply
STEP 1:
We moeten gaan kijken naar de grafieken om te zien of de ARIMA forecast explosief is of niet.
Als de werkelijke waarden binnen het 95%betrouwbaarheidsinterval liggen, dan kan je niet zeggen de forecast explosief is. We zien op de grafiek dat in dit geval de werkelijke waarden mooi binnen het betrouwbaarheidsinterval liggen (werkelijke waarden = lijn zonder stippen).
We kunnen dus niet zeggen dat deze forecast explosief is waardoor we kunnen besluiten dat het AR-proces stabiel is en het MA-proces omkeerbaar is.

STEP 2:
om deze vraag te kunnen beantwoorden moeten we gaan kijken naar de andere grafiek.
We zien op lange termijn een stijgende trend en ook een patroon dat telkens terugkomt. Maar om dit met zekerheid te kunnen vaststellen, is verder onderzoek nodig.
We zien ook da de forecast eigenlijk dit zelfde patroon voortzet, de voorspelling is dus goed gemaakt.

STEP 3:
We zien dat de %S.E. varieert tussen 0.048 en 0.1189. De procentuele standaardfout loopt dus op, maar blijft wel zeer klein. Dat wil dus zeggen dat de voorspellingswaarden niet veel afwijken van de werkelijke waarden.
De werkelijke fout (volgende kolom) is meestal kleiner dan deze %standaardfout. (dit is ook hier het geval)

STEP 4:
Hiervoor moeten we kijken naar de tabel Univariate ARIMA Extrapolation Forecast.
In de zevende kolom vinden we de kans dat er een stijging is t.o.v. een vorige periode.
Uit de achtste kolom kunnen we de kans aflezen dat er een stijging is t.o.v. van vorig jaar.
De negende en laatste kolom bevat de kans dat er een stijging is t.o.v. de laatst gekende maand.

STEP 5:
Hiervoor kunnen we weer gaan kijken naar de grafiek extrapolation forecast.
De waarden blijven steeds binnen 95%betrouwbaarheidsinterval. Op de meeste tijdstippen kunnen we zien dat de werkelijke en voorspellingswaarden niet significant afwijken van elkaar. enkel op tijstip 135 en 140 is er een 'afwijking' tussen deze waarden. Je kan dit ook nakijken in de grote tabel.

Post a new message
Dataseries X:
112
118
132
129
121
135
148
148
136
119
104
118
115
126
141
135
125
149
170
170
158
133
114
140
145
150
178
163
172
178
199
199
184
162
146
166
171
180
193
181
183
218
230
242
209
191
172
194
196
196
236
235
229
243
264
272
237
211
180
201
204
188
235
227
234
264
302
293
259
229
203
229
242
233
267
269
270
315
364
347
312
274
237
278
284
277
317
313
318
374
413
405
355
306
271
306
315
301
356
348
355
422
465
467
404
347
305
336
340
318
362
348
363
435
491
505
404
359
310
337
360
342
406
396
420
472
548
559
463
407
362
405
417
391
419
461
472
535
622
606
508
461
390
432




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=34002&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=34002&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=34002&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[132])
120337-------
121360-------
122342-------
123406-------
124396-------
125420-------
126472-------
127548-------
128559-------
129463-------
130407-------
131362-------
132405-------
133417420.4376385.2234459.9540.43230.77810.99860.7781
134391399.1493361.0418442.65540.35680.21060.9950.3961
135419473.1677420.2928535.02660.04310.99540.98330.9846
136461459.762404.1038525.81170.48530.88680.97080.9479
137472479.1007415.9796555.26150.42750.67930.93590.9717
138535561.8519479.5594663.48750.30230.95840.95840.9988
139622645.7644542.0887776.76630.36110.95130.92820.9998
140606653.5451543.1045795.05290.25510.66890.90480.9997
141508539.2133448.8089654.79360.29830.12870.90190.9886
142461467.3323388.8733567.67860.45080.21350.88070.8883
143390406.0529337.9633493.1080.35890.1080.83940.5095
144432456.5858374.9333562.94780.32530.89010.82910.8291

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[132]) \tabularnewline
120 & 337 & - & - & - & - & - & - & - \tabularnewline
121 & 360 & - & - & - & - & - & - & - \tabularnewline
122 & 342 & - & - & - & - & - & - & - \tabularnewline
123 & 406 & - & - & - & - & - & - & - \tabularnewline
124 & 396 & - & - & - & - & - & - & - \tabularnewline
125 & 420 & - & - & - & - & - & - & - \tabularnewline
126 & 472 & - & - & - & - & - & - & - \tabularnewline
127 & 548 & - & - & - & - & - & - & - \tabularnewline
128 & 559 & - & - & - & - & - & - & - \tabularnewline
129 & 463 & - & - & - & - & - & - & - \tabularnewline
130 & 407 & - & - & - & - & - & - & - \tabularnewline
131 & 362 & - & - & - & - & - & - & - \tabularnewline
132 & 405 & - & - & - & - & - & - & - \tabularnewline
133 & 417 & 420.4376 & 385.2234 & 459.954 & 0.4323 & 0.7781 & 0.9986 & 0.7781 \tabularnewline
134 & 391 & 399.1493 & 361.0418 & 442.6554 & 0.3568 & 0.2106 & 0.995 & 0.3961 \tabularnewline
135 & 419 & 473.1677 & 420.2928 & 535.0266 & 0.0431 & 0.9954 & 0.9833 & 0.9846 \tabularnewline
136 & 461 & 459.762 & 404.1038 & 525.8117 & 0.4853 & 0.8868 & 0.9708 & 0.9479 \tabularnewline
137 & 472 & 479.1007 & 415.9796 & 555.2615 & 0.4275 & 0.6793 & 0.9359 & 0.9717 \tabularnewline
138 & 535 & 561.8519 & 479.5594 & 663.4875 & 0.3023 & 0.9584 & 0.9584 & 0.9988 \tabularnewline
139 & 622 & 645.7644 & 542.0887 & 776.7663 & 0.3611 & 0.9513 & 0.9282 & 0.9998 \tabularnewline
140 & 606 & 653.5451 & 543.1045 & 795.0529 & 0.2551 & 0.6689 & 0.9048 & 0.9997 \tabularnewline
141 & 508 & 539.2133 & 448.8089 & 654.7936 & 0.2983 & 0.1287 & 0.9019 & 0.9886 \tabularnewline
142 & 461 & 467.3323 & 388.8733 & 567.6786 & 0.4508 & 0.2135 & 0.8807 & 0.8883 \tabularnewline
143 & 390 & 406.0529 & 337.9633 & 493.108 & 0.3589 & 0.108 & 0.8394 & 0.5095 \tabularnewline
144 & 432 & 456.5858 & 374.9333 & 562.9478 & 0.3253 & 0.8901 & 0.8291 & 0.8291 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=34002&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[132])[/C][/ROW]
[ROW][C]120[/C][C]337[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]121[/C][C]360[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]122[/C][C]342[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]123[/C][C]406[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]124[/C][C]396[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]125[/C][C]420[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]126[/C][C]472[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]127[/C][C]548[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]128[/C][C]559[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]129[/C][C]463[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]130[/C][C]407[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]131[/C][C]362[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]132[/C][C]405[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]133[/C][C]417[/C][C]420.4376[/C][C]385.2234[/C][C]459.954[/C][C]0.4323[/C][C]0.7781[/C][C]0.9986[/C][C]0.7781[/C][/ROW]
[ROW][C]134[/C][C]391[/C][C]399.1493[/C][C]361.0418[/C][C]442.6554[/C][C]0.3568[/C][C]0.2106[/C][C]0.995[/C][C]0.3961[/C][/ROW]
[ROW][C]135[/C][C]419[/C][C]473.1677[/C][C]420.2928[/C][C]535.0266[/C][C]0.0431[/C][C]0.9954[/C][C]0.9833[/C][C]0.9846[/C][/ROW]
[ROW][C]136[/C][C]461[/C][C]459.762[/C][C]404.1038[/C][C]525.8117[/C][C]0.4853[/C][C]0.8868[/C][C]0.9708[/C][C]0.9479[/C][/ROW]
[ROW][C]137[/C][C]472[/C][C]479.1007[/C][C]415.9796[/C][C]555.2615[/C][C]0.4275[/C][C]0.6793[/C][C]0.9359[/C][C]0.9717[/C][/ROW]
[ROW][C]138[/C][C]535[/C][C]561.8519[/C][C]479.5594[/C][C]663.4875[/C][C]0.3023[/C][C]0.9584[/C][C]0.9584[/C][C]0.9988[/C][/ROW]
[ROW][C]139[/C][C]622[/C][C]645.7644[/C][C]542.0887[/C][C]776.7663[/C][C]0.3611[/C][C]0.9513[/C][C]0.9282[/C][C]0.9998[/C][/ROW]
[ROW][C]140[/C][C]606[/C][C]653.5451[/C][C]543.1045[/C][C]795.0529[/C][C]0.2551[/C][C]0.6689[/C][C]0.9048[/C][C]0.9997[/C][/ROW]
[ROW][C]141[/C][C]508[/C][C]539.2133[/C][C]448.8089[/C][C]654.7936[/C][C]0.2983[/C][C]0.1287[/C][C]0.9019[/C][C]0.9886[/C][/ROW]
[ROW][C]142[/C][C]461[/C][C]467.3323[/C][C]388.8733[/C][C]567.6786[/C][C]0.4508[/C][C]0.2135[/C][C]0.8807[/C][C]0.8883[/C][/ROW]
[ROW][C]143[/C][C]390[/C][C]406.0529[/C][C]337.9633[/C][C]493.108[/C][C]0.3589[/C][C]0.108[/C][C]0.8394[/C][C]0.5095[/C][/ROW]
[ROW][C]144[/C][C]432[/C][C]456.5858[/C][C]374.9333[/C][C]562.9478[/C][C]0.3253[/C][C]0.8901[/C][C]0.8291[/C][C]0.8291[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=34002&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=34002&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[132])
120337-------
121360-------
122342-------
123406-------
124396-------
125420-------
126472-------
127548-------
128559-------
129463-------
130407-------
131362-------
132405-------
133417420.4376385.2234459.9540.43230.77810.99860.7781
134391399.1493361.0418442.65540.35680.21060.9950.3961
135419473.1677420.2928535.02660.04310.99540.98330.9846
136461459.762404.1038525.81170.48530.88680.97080.9479
137472479.1007415.9796555.26150.42750.67930.93590.9717
138535561.8519479.5594663.48750.30230.95840.95840.9988
139622645.7644542.0887776.76630.36110.95130.92820.9998
140606653.5451543.1045795.05290.25510.66890.90480.9997
141508539.2133448.8089654.79360.29830.12870.90190.9886
142461467.3323388.8733567.67860.45080.21350.88070.8883
143390406.0529337.9633493.1080.35890.1080.83940.5095
144432456.5858374.9333562.94780.32530.89010.82910.8291







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
1330.048-0.00827e-0411.81740.98480.9924
1340.0556-0.02040.001766.41095.53422.3525
1350.0667-0.11450.00952934.1384244.511515.6369
1360.07330.00272e-041.53270.12770.3574
1370.0811-0.01480.001250.42064.20172.0498
1380.0923-0.04780.004721.022860.08527.7515
1390.1035-0.03680.0031564.749147.06246.8602
1400.1105-0.07270.00612260.5365188.37813.7251
1410.1094-0.05790.0048974.267281.18899.0105
1420.1096-0.01350.001140.09833.34151.828
1430.1094-0.03950.0033257.694521.47454.6341
1440.1189-0.05380.0045604.463350.37197.0973

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & Sq.E & MSE & RMSE \tabularnewline
133 & 0.048 & -0.0082 & 7e-04 & 11.8174 & 0.9848 & 0.9924 \tabularnewline
134 & 0.0556 & -0.0204 & 0.0017 & 66.4109 & 5.5342 & 2.3525 \tabularnewline
135 & 0.0667 & -0.1145 & 0.0095 & 2934.1384 & 244.5115 & 15.6369 \tabularnewline
136 & 0.0733 & 0.0027 & 2e-04 & 1.5327 & 0.1277 & 0.3574 \tabularnewline
137 & 0.0811 & -0.0148 & 0.0012 & 50.4206 & 4.2017 & 2.0498 \tabularnewline
138 & 0.0923 & -0.0478 & 0.004 & 721.0228 & 60.0852 & 7.7515 \tabularnewline
139 & 0.1035 & -0.0368 & 0.0031 & 564.7491 & 47.0624 & 6.8602 \tabularnewline
140 & 0.1105 & -0.0727 & 0.0061 & 2260.5365 & 188.378 & 13.7251 \tabularnewline
141 & 0.1094 & -0.0579 & 0.0048 & 974.2672 & 81.1889 & 9.0105 \tabularnewline
142 & 0.1096 & -0.0135 & 0.0011 & 40.0983 & 3.3415 & 1.828 \tabularnewline
143 & 0.1094 & -0.0395 & 0.0033 & 257.6945 & 21.4745 & 4.6341 \tabularnewline
144 & 0.1189 & -0.0538 & 0.0045 & 604.4633 & 50.3719 & 7.0973 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=34002&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][/ROW]
[ROW][C]133[/C][C]0.048[/C][C]-0.0082[/C][C]7e-04[/C][C]11.8174[/C][C]0.9848[/C][C]0.9924[/C][/ROW]
[ROW][C]134[/C][C]0.0556[/C][C]-0.0204[/C][C]0.0017[/C][C]66.4109[/C][C]5.5342[/C][C]2.3525[/C][/ROW]
[ROW][C]135[/C][C]0.0667[/C][C]-0.1145[/C][C]0.0095[/C][C]2934.1384[/C][C]244.5115[/C][C]15.6369[/C][/ROW]
[ROW][C]136[/C][C]0.0733[/C][C]0.0027[/C][C]2e-04[/C][C]1.5327[/C][C]0.1277[/C][C]0.3574[/C][/ROW]
[ROW][C]137[/C][C]0.0811[/C][C]-0.0148[/C][C]0.0012[/C][C]50.4206[/C][C]4.2017[/C][C]2.0498[/C][/ROW]
[ROW][C]138[/C][C]0.0923[/C][C]-0.0478[/C][C]0.004[/C][C]721.0228[/C][C]60.0852[/C][C]7.7515[/C][/ROW]
[ROW][C]139[/C][C]0.1035[/C][C]-0.0368[/C][C]0.0031[/C][C]564.7491[/C][C]47.0624[/C][C]6.8602[/C][/ROW]
[ROW][C]140[/C][C]0.1105[/C][C]-0.0727[/C][C]0.0061[/C][C]2260.5365[/C][C]188.378[/C][C]13.7251[/C][/ROW]
[ROW][C]141[/C][C]0.1094[/C][C]-0.0579[/C][C]0.0048[/C][C]974.2672[/C][C]81.1889[/C][C]9.0105[/C][/ROW]
[ROW][C]142[/C][C]0.1096[/C][C]-0.0135[/C][C]0.0011[/C][C]40.0983[/C][C]3.3415[/C][C]1.828[/C][/ROW]
[ROW][C]143[/C][C]0.1094[/C][C]-0.0395[/C][C]0.0033[/C][C]257.6945[/C][C]21.4745[/C][C]4.6341[/C][/ROW]
[ROW][C]144[/C][C]0.1189[/C][C]-0.0538[/C][C]0.0045[/C][C]604.4633[/C][C]50.3719[/C][C]7.0973[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=34002&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=34002&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPESq.EMSERMSE
1330.048-0.00827e-0411.81740.98480.9924
1340.0556-0.02040.001766.41095.53422.3525
1350.0667-0.11450.00952934.1384244.511515.6369
1360.07330.00272e-041.53270.12770.3574
1370.0811-0.01480.001250.42064.20172.0498
1380.0923-0.04780.004721.022860.08527.7515
1390.1035-0.03680.0031564.749147.06246.8602
1400.1105-0.07270.00612260.5365188.37813.7251
1410.1094-0.05790.0048974.267281.18899.0105
1420.1096-0.01350.001140.09833.34151.828
1430.1094-0.03950.0033257.694521.47454.6341
1440.1189-0.05380.0045604.463350.37197.0973



Parameters (Session):
par1 = 12 ; par2 = -0.3 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = -0.3 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 0 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i]
perf.mape[i] = perf.mape[i] + abs(perf.pe[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
perf.mse[i] = perf.mse[i] + perf.se[i]
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape = perf.mape / fx
perf.mse = perf.mse / fx
perf.rmse = sqrt(perf.mse)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:12] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')