Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationMon, 08 Dec 2008 13:47:21 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/08/t1228769313occemitqtxf6b6j.htm/, Retrieved Thu, 16 May 2024 05:18:13 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=30998, Retrieved Thu, 16 May 2024 05:18:13 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact191
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Law of Averages] [Random Walk Simul...] [2008-11-25 17:50:19] [b98453cac15ba1066b407e146608df68]
F       [Law of Averages] [Non Stationary Ti...] [2008-11-30 21:33:42] [82d201ca7b4e7cd2c6f885d29b5b6937]
F RMPD      [Standard Deviation-Mean Plot] [SMP] [2008-12-08 20:47:21] [00a0a665d7a07edd2e460056b0c0c354] [Current]
Feedback Forum
2008-12-15 21:46:10 [Inge Meelberghs] [reply
Uit de eerste tabel van de SMP kunnen we de beta waarde en de p-waarde aflezen. De p-waarde heeft betrekking op de beta waarde van de regressie rechte. Hier wordt de beta dus eigenlijk getoetst. Aan de hand van deze waarde kunnen we ook nagaan of de helling positief of negatief is en of deze te wijten is aan toeval ?
In dit geval bedraagt beta -0.0747181178000781 wat wil zeggen de rechte dus een dalend verloop aanneemt. De P-waarde is vrij groot,0.197451813170098. Deze is dus > dan 5% wat ervoor zorgt dat de beta waarde niet significant is van 0. (aan de eerste voorwaarde is in dit geval dus niet voldaan)

In de scaterplot zien we aan de linkerkant van de grafiek duidelijk een outlier die we niet mogen negeren.
Als outliers in de scatterplot meer naar links of rechts wijken moeten we opletten doordat deze dan een invloed hebben op het verloop van de regressierechte. In deze berekening is dit het geval waardoor er niet aan de tweede voorwaarde is voldaan.

Uit de tweede tabel kunnen we dan de lambda waarde aflezen die 1.99737253529032 bedraagt. Maar doordat er niet aan de twee voorwaarden ( beta significant van 0 en geen invloedrijke outliers) is voldaan mogen we deze niet als optimale lambda waarde aannemen en moeten we 1 nemen.

Post a new message
Dataseries X:
11703.7
16283.6
16726.5
14968.9
14861
14583.3
15305.8
17903.9
16379.4
15420.3
17870.5
15912.8
13866.5
17823.2
17872
17420.4
16704.4
15991.2
16583.6
19123.5
17838.7
17209.4
18586.5
16258.1
15141.6
19202.1
17746.5
19090.1
18040.3
17515.5
17751.8
21072.4
17170
19439.5
19795.4
17574.9
16165.4
19464.6
19932.1
19961.2
17343.4
18924.2
18574.1
21350.6
18594.6
19823.1
20844.4
19640.2
17735.4
19813.6
22160
20664.3
17877.4
21211.2
21423.1
21688.7
23243.2
21490.2
22925.8
23184.8
18562.2




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30998&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30998&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30998&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
114920.6752270.816467521475022.8
215663.51522.955431608773320.6
316395.751058.284506485222450.2
416745.5251929.988820995264005.5
517100.6751384.094913351923132.3
617473.175986.4220846912682328.4
717795.0751888.570730076054060.5
8185951665.483847615063556.9
918494.951314.702679949602625.4
1018880.8251824.528747147243795.8
1119048.0751678.048027471204007.2
1219725.575921.5338386805642249.80000000000
1320093.3251847.089096163654424.6
1420550.11792.476634901183811.3
1522711825.472583837081753

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 14920.675 & 2270.81646752147 & 5022.8 \tabularnewline
2 & 15663.5 & 1522.95543160877 & 3320.6 \tabularnewline
3 & 16395.75 & 1058.28450648522 & 2450.2 \tabularnewline
4 & 16745.525 & 1929.98882099526 & 4005.5 \tabularnewline
5 & 17100.675 & 1384.09491335192 & 3132.3 \tabularnewline
6 & 17473.175 & 986.422084691268 & 2328.4 \tabularnewline
7 & 17795.075 & 1888.57073007605 & 4060.5 \tabularnewline
8 & 18595 & 1665.48384761506 & 3556.9 \tabularnewline
9 & 18494.95 & 1314.70267994960 & 2625.4 \tabularnewline
10 & 18880.825 & 1824.52874714724 & 3795.8 \tabularnewline
11 & 19048.075 & 1678.04802747120 & 4007.2 \tabularnewline
12 & 19725.575 & 921.533838680564 & 2249.80000000000 \tabularnewline
13 & 20093.325 & 1847.08909616365 & 4424.6 \tabularnewline
14 & 20550.1 & 1792.47663490118 & 3811.3 \tabularnewline
15 & 22711 & 825.47258383708 & 1753 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30998&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]14920.675[/C][C]2270.81646752147[/C][C]5022.8[/C][/ROW]
[ROW][C]2[/C][C]15663.5[/C][C]1522.95543160877[/C][C]3320.6[/C][/ROW]
[ROW][C]3[/C][C]16395.75[/C][C]1058.28450648522[/C][C]2450.2[/C][/ROW]
[ROW][C]4[/C][C]16745.525[/C][C]1929.98882099526[/C][C]4005.5[/C][/ROW]
[ROW][C]5[/C][C]17100.675[/C][C]1384.09491335192[/C][C]3132.3[/C][/ROW]
[ROW][C]6[/C][C]17473.175[/C][C]986.422084691268[/C][C]2328.4[/C][/ROW]
[ROW][C]7[/C][C]17795.075[/C][C]1888.57073007605[/C][C]4060.5[/C][/ROW]
[ROW][C]8[/C][C]18595[/C][C]1665.48384761506[/C][C]3556.9[/C][/ROW]
[ROW][C]9[/C][C]18494.95[/C][C]1314.70267994960[/C][C]2625.4[/C][/ROW]
[ROW][C]10[/C][C]18880.825[/C][C]1824.52874714724[/C][C]3795.8[/C][/ROW]
[ROW][C]11[/C][C]19048.075[/C][C]1678.04802747120[/C][C]4007.2[/C][/ROW]
[ROW][C]12[/C][C]19725.575[/C][C]921.533838680564[/C][C]2249.80000000000[/C][/ROW]
[ROW][C]13[/C][C]20093.325[/C][C]1847.08909616365[/C][C]4424.6[/C][/ROW]
[ROW][C]14[/C][C]20550.1[/C][C]1792.47663490118[/C][C]3811.3[/C][/ROW]
[ROW][C]15[/C][C]22711[/C][C]825.47258383708[/C][C]1753[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30998&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30998&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
114920.6752270.816467521475022.8
215663.51522.955431608773320.6
316395.751058.284506485222450.2
416745.5251929.988820995264005.5
517100.6751384.094913351923132.3
617473.175986.4220846912682328.4
717795.0751888.570730076054060.5
8185951665.483847615063556.9
918494.951314.702679949602625.4
1018880.8251824.528747147243795.8
1119048.0751678.048027471204007.2
1219725.575921.5338386805642249.80000000000
1320093.3251847.089096163654424.6
1420550.11792.476634901183811.3
1522711825.472583837081753







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha2893.17800640192
beta-0.0747181178000781
S.D.0.055005639597577
T-STAT-1.35837194779877
p-value0.197451813170098

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 2893.17800640192 \tabularnewline
beta & -0.0747181178000781 \tabularnewline
S.D. & 0.055005639597577 \tabularnewline
T-STAT & -1.35837194779877 \tabularnewline
p-value & 0.197451813170098 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30998&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]2893.17800640192[/C][/ROW]
[ROW][C]beta[/C][C]-0.0747181178000781[/C][/ROW]
[ROW][C]S.D.[/C][C]0.055005639597577[/C][/ROW]
[ROW][C]T-STAT[/C][C]-1.35837194779877[/C][/ROW]
[ROW][C]p-value[/C][C]0.197451813170098[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30998&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30998&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha2893.17800640192
beta-0.0747181178000781
S.D.0.055005639597577
T-STAT-1.35837194779877
p-value0.197451813170098







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha17.0717399589404
beta-0.997372535290324
S.D.0.725474501147471
T-STAT-1.37478647934944
p-value0.192431168732869
Lambda1.99737253529032

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 17.0717399589404 \tabularnewline
beta & -0.997372535290324 \tabularnewline
S.D. & 0.725474501147471 \tabularnewline
T-STAT & -1.37478647934944 \tabularnewline
p-value & 0.192431168732869 \tabularnewline
Lambda & 1.99737253529032 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=30998&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]17.0717399589404[/C][/ROW]
[ROW][C]beta[/C][C]-0.997372535290324[/C][/ROW]
[ROW][C]S.D.[/C][C]0.725474501147471[/C][/ROW]
[ROW][C]T-STAT[/C][C]-1.37478647934944[/C][/ROW]
[ROW][C]p-value[/C][C]0.192431168732869[/C][/ROW]
[ROW][C]Lambda[/C][C]1.99737253529032[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=30998&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=30998&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha17.0717399589404
beta-0.997372535290324
S.D.0.725474501147471
T-STAT-1.37478647934944
p-value0.192431168732869
Lambda1.99737253529032



Parameters (Session):
par1 = 4 ;
Parameters (R input):
par1 = 4 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')