| par1 <- as.numeric(par1)par2 <- as.numeric(par2)
 par3 <- as.numeric(par3)
 par4 <- as.numeric(par4)
 par5 <- as.numeric(par5)
 (z <- abs(qnorm((1-par3)/2)) + abs(qnorm(1-par5)))
 (z1 <- abs(qnorm(1-par3)) + abs(qnorm(1-par5)))
 z2 <- z*z
 z2one <- z1*z1
 z24 <- z2 * par4
 z24one <- z2one * par4
 npop <- array(NA, 200)
 ppop <- array(NA, 200)
 for (i in 1:200)
 {
 ppop[i] <- i * 100
 npop[i] <- ppop[i] * z24 / (z24 + (ppop[i] - 1) * par2*par2)
 }
 bitmap(file='pic1.png')
 plot(ppop,npop, xlab='population size', ylab='sample size (2 sided test)', main = paste('Confidence',par3))
 dumtext <- paste('Margin of error = ',par2)
 dumtext <- paste(dumtext,' Population Var. = ')
 dumtext <- paste(dumtext, par4)
 mtext(dumtext)
 grid()
 dev.off()
 par2sq <- par2 * par2
 num <- par1 * z24
 denom <- z24 + (par1 - 1) * par2sq
 (n <- num/denom)
 num1 <- par1 * z24one
 denom1 <- z24one + (par1 - 1) * par2sq
 (n1 <- num1/denom1)
 load(file='createtable')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size',2,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Size',header=TRUE)
 a<-table.element(a,par1)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Margin of Error',header=TRUE)
 a<-table.element(a,par2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Confidence',header=TRUE)
 a<-table.element(a,par3)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Power',header=TRUE)
 a<-table.element(a,par5)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Variance',header=TRUE)
 a<-table.element(a,par4)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)
 a<-table.element(a,z)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)
 a<-table.element(a,z1)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
 a<-table.element(a,n)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
 a<-table.element(a,n1)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 (ni <- z24 / (par2sq))
 (ni1 <- z24one / (par2sq))
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (for Infinite Populations)',2,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Size',header=TRUE)
 a<-table.element(a,'infinite')
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Margin of Error',header=TRUE)
 a<-table.element(a,par2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Confidence',header=TRUE)
 a<-table.element(a,par3)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Power',header=TRUE)
 a<-table.element(a,par5)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Variance',header=TRUE)
 a<-table.element(a,par4)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'z(alpha/2) + z(beta)',header=TRUE)
 a<-table.element(a,z)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'z(alpha) + z(beta)',header=TRUE)
 a<-table.element(a,z1)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
 a<-table.element(a,ni)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
 a<-table.element(a,ni1)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 (z <- abs(qt((1-par3)/2,n-1)) + abs(qt(1-par5,n-1)))
 (z1 <- abs(qt(1-par3,n1-1)) + abs(qt(1-par5,n1-1)))
 z2 <- z*z
 z2one <- z1*z1
 z24 <- z2 * par4
 z24one <- z2one * par4
 par2sq <- par2 * par2
 num <- par1 * z24
 denom <- z24 + (par1 - 1) * par2sq
 (n <- num/denom)
 num1 <- par1 * z24one
 denom1 <- z24one + (par1 - 1) * par2sq
 (n1 <- num1/denom1)
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (Unknown Population Variance)',2,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Size',header=TRUE)
 a<-table.element(a,par1)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Margin of Error',header=TRUE)
 a<-table.element(a,par2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Confidence',header=TRUE)
 a<-table.element(a,par3)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Power',header=TRUE)
 a<-table.element(a,par5)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Variance',header=TRUE)
 a<-table.element(a,'unknown')
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE)
 a<-table.element(a,z)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'t(alpha) + t(beta)',header=TRUE)
 a<-table.element(a,z1)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
 a<-table.element(a,n)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
 a<-table.element(a,n1)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 (z <- abs(qt((1-par3)/2,ni-1)) + abs(qt(1-par5,ni-1)))
 (z1 <- abs(qt(1-par3,ni1-1)) + abs(qt(1-par5,ni1-1)))
 z2 <- z*z
 z2one <- z1*z1
 z24 <- z2 * par4
 z24one <- z2one * par4
 (ni <- z24 / (par2sq))
 (ni1 <- z24one / (par2sq))
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size
 (Infinite Population, Unknown Population Variance)',2,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Size',header=TRUE)
 a<-table.element(a,'infinite')
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Margin of Error',header=TRUE)
 a<-table.element(a,par2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Confidence',header=TRUE)
 a<-table.element(a,par3)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Power',header=TRUE)
 a<-table.element(a,par5)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Population Variance',header=TRUE)
 a<-table.element(a,'unknown')
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'t(alpha/2) + t(beta)',header=TRUE)
 a<-table.element(a,z)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'t(alpha) + t(beta)',header=TRUE)
 a<-table.element(a,z1)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (2 sided test)',header=TRUE)
 a<-table.element(a,ni)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Minimum Sample Size (1 sided test)',header=TRUE)
 a<-table.element(a,ni1)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 
 |