| llama-package | Leveraging Learning to Automatically Manage Algorithms |
| bsFolds | Bootstrapping folds |
| classify | Classification model |
| classifyPairs | Classification model for pairs of algorithms |
| cluster | Cluster model |
| contributions | Analysis functions |
| cvFolds | Cross-validation folds |
| imputeCensored | Impute censored values |
| input | Read data |
| llama | Leveraging Learning to Automatically Manage Algorithms |
| makeRLearner.classif.constant | Helpers |
| misclassificationPenalties | Misclassification penalty |
| normalize | Normalize features |
| parscores | Penalized average runtime score |
| perfScatterPlot | Plot convenience functions to visualise selectors |
| predictLearner.classif.constant | Helpers |
| predTable | Convenience functions |
| print.llama.data | Helpers |
| print.llama.model | Helpers |
| regression | Regression model |
| regressionPairs | Regression model for pairs of algorithms |
| satsolvers | Example data for Leveraging Learning to Automatically Manage Algorithms |
| singleBest | Convenience functions |
| singleBestByCount | Convenience functions |
| singleBestByPar | Convenience functions |
| singleBestBySuccesses | Convenience functions |
| successes | Success |
| trainLearner.classif.constant | Helpers |
| trainTest | Train / test split |
| tuneModel | Tune the hyperparameters of the machine learning algorithm underlying a model |
| vbs | Convenience functions |