| Acc | Accuracy |
| Acc_rnd | Accuracy of a random model |
| aggregate_imp | Aggregate importances |
| Aitchison | Compositional kernels |
| Boots_CI | Confidence Interval using Bootstrap |
| BrayCurtis | Kernels for count data |
| centerK | Centering a kernel matrix |
| centerX | Centering a squared matrix by row or column |
| Chi2 | Chi-squared kernel |
| cLinear | Compositional kernels |
| cosNorm | Cosine normalization of a kernel matrix |
| cosnormX | Cosine normalization of a matrix |
| desparsify | This function deletes those columns and/or rows in a matrix/data.frame that only contain 0s. |
| Dirac | Kernels for categorical variables |
| dummy_data | Convert categorical data to dummies. |
| dummy_var | Levels per factor variable |
| estimate_gamma | Gamma hyperparameter estimation (RBF kernel) |
| F1 | F1 score |
| Frobenius | Frobenius kernel |
| frobNorm | Frobenius normalization |
| heatK | Kernel matrix heatmap |
| histK | Kernel matrix histogram |
| Intersect | Kernels for sets |
| Jaccard | Kernels for sets |
| Kendall | Kendall's tau kernel |
| kPCA | Kernel PCA |
| kPCA_arrows | Plot the original variables' contribution to a PCA plot |
| kPCA_imp | Contributions of the variables to the Principal Components ("loadings") |
| KTA | Kernel-target alignment |
| Laplace | Laplacian kernel |
| Linear | Linear kernel |
| minmax | Minmax normalization |
| MKC | Multiple Kernel (Matrices) Combination |
| nmse | NMSE (Normalized Mean Squared Error) |
| Normal_CI | Confidence Interval using Normal Approximation |
| plotImp | Importance barplot |
| Prec | Precision or PPV |
| Procrustes | Procrustes Analysis |
| RBF | Gaussian RBF (Radial Basis Function) kernel |
| Rec | Recall or Sensitivity or TPR |
| Ruzicka | Kernels for count data |
| showdata | Showdata |
| simK | Kernel matrix similarity |
| soil | Soil microbiota (raw counts) |
| Spe | Specificity or TNR |
| Spectrum | Spectrum kernel |
| svm_imp | SVM feature importance |
| TSS | Total Sum Scaling |
| vonNeumann | Von Neumann entropy |