| Aniso_fit | Fit the stationary spatial model |
| cov_spatial | Calculate spatial covariance. |
| evaluate_CV | Evaluation criteria |
| f_mc_kernels | Calculate mixture component kernel matrices. |
| kernel_cov | Calculate a kernel covariance matrix. |
| make_global_loglik1 | Constructor functions for global parameter estimation. |
| make_global_loglik1_kappa | Constructor functions for global parameter estimation. |
| make_global_loglik2 | Constructor functions for global parameter estimation. |
| make_global_loglik2_kappa | Constructor functions for global parameter estimation. |
| make_global_loglik3 | Constructor functions for global parameter estimation. |
| make_global_loglik3_kappa | Constructor functions for global parameter estimation. |
| make_global_loglik4_kappa | Constructor functions for global parameter estimation. |
| make_local_lik | Constructor functions for local parameter estimation. |
| mc_N | Calculate local sample sizes. |
| NSconvo_fit | Fit the nonstationary spatial model |
| NSconvo_sim | Simulate data from the nonstationary model. |
| plot.Aniso | Plot of the estimated correlations from the stationary model. |
| plot.NSconvo | Plot from the nonstationary model. |
| predict.Aniso | Obtain predictions at unobserved locations for the stationary spatial model. |
| predict.NSconvo | Obtain predictions at unobserved locations for the nonstationary spatial model. |
| simdata | Simulated nonstationary dataset |
| summary.Aniso | Summarize the stationary model fit. |
| summary.NSconvo | Summarize the nonstationary model fit. |
| US.mc.grids | Mixture component grids for the western United States |
| US.prediction.locs | Prediction locations for the western United States |
| USprecip97 | Annual precipitation measurements from the western United States, 1997 |