| .beta.MH.RW.glm | Beta MH RW sampler from freq PEM fit |
| .beta_MH_MALA | Proposal beta with a Metropolis Adjusted Langevin (MALA) |
| .beta_MH_NR | Newton Raphson MH move |
| .beta_MH_RW | Beta Metropolis-Hastings random walk move |
| .beta_mom | Mean for MALA using derivative for beta proposal |
| .beta_mom.NR.fun | First and second derivative of target for mode and variance of proposal |
| .birth_move | Birth move in RJMCMC |
| .dataframe_fun | Create data.frame for piecewise exponential models |
| .death_move | Death move in RJMCMC |
| .glmFit | Fit frequentist piecewise exponential model for MLE and information matrix of beta |
| .ICAR_calc | Calculate covariance matrix in the MVN-ICAR |
| .input_check | Input checker |
| .J_RJMCMC | RJMCMC (with Bayesian Borrowing) |
| .J_RJMCMC_NoBorrow | RJMCMC (without Bayesian Borrowing) |
| .lambda_0_MH_cp | Lambda_0 MH step, proposal from conditional conjugate posterior |
| .lambda_0_MH_cp_NoBorrow | Lambda_0 MH step, proposal from conditional conjugate posterior |
| .lambda_conj_prop | Propose lambda from a gamma conditional conjugate posterior proposal |
| .lambda_MH_cp | Lambda MH step, proposal from conditional conjugate posterior |
| .lgamma_ratio | Calculate log gamma ratio for two different parameter values |
| .llikelihood_ratio_beta | Loglikelihood ratio calculation for beta parameters |
| .llikelihood_ratio_lambda | Log likelihood for lambda / lambda_0 update |
| .logsumexp | Computes the logarithmic sum of an exponential |
| .log_likelihood | Log likelihood function |
| .lprop.dens.beta.NR | log Gaussian proposal density for Newton Raphson proposal |
| .lprop_density_beta | Log density of proposal for MALA |
| .ltau_dprior | Calculate log density tau prior |
| .mu_update | Calculate mu posterior update |
| .normalize_prob | Normalize a set of probability to one, using the the log-sum-exp trick |
| .nu_sigma_update | Calculates nu and sigma2 for the Gaussian Markov random field prior, for a given split point j |
| .plot_hist | Plot histogram from MCMC samples |
| .plot_matrix | Plot smoothed baseline hazards |
| .plot_trace | Plot MCMC trace |
| .predictive_hazard | Predictive hazard from BayesFBHborrow object |
| .predictive_hazard_ratio | Predictive hazard ratio (HR) from BayesFBHborrow object |
| .predictive_survival | Predictive survival from BayesFBHborrow object |
| .set_hyperparameters | Set tuning parameters |
| .set_tuning_parameters | Set tuning parameters |
| .shuffle_split_point_location | Metropolis Hastings step: shuffle the split point locations (with Bayesian borrowing) |
| .shuffle_split_point_location_NoBorrow | Metropolis Hastings step: shuffle the split point locations (without Bayesian borrowing) |
| .sigma2_update | Calculate sigma2 posterior update |
| .smooth_hazard | Smoothed hazard function |
| .smooth_survival | Smoothed survival curve |
| .tau_update | Sample tau from posterior distribution |
| BayesFBHborrow | BayesFBHborrow: Run MCMC for a piecewise exponential model |
| BayesFBHborrow.NoBorrow | Run the MCMC sampler without Bayesian Borrowing |
| BayesFBHborrow.WBorrow | Run the MCMC sampler with Bayesian Borrowing |
| coef.BayesFBHborrow | Extract mean posterior values |
| GibbsMH | S3 generic, calls the correct GibbsMH sampler |
| GibbsMH.NoBorrow | GibbsMH sampler, without Bayesian Borrowing |
| GibbsMH.WBorrow | GibbsMH sampler, with Bayesian Borrowing |
| group_summary | Create group level data |
| init_lambda_hyperparameters | Initialize lambda hyperparameters |
| piecewise_exp_cc | Example data, simulated from a piecewise exponential model. |
| piecewise_exp_hist | Example data, simulated from a piecewise exponential model. |
| plot.BayesFBHborrow | Plot the MCMC results |
| summary.BayesFBHborrow | Summarize fixed MCMC results |
| weibull_cc | Example data, simulated from a Weibull distribution. |
| weibull_hist | Example data, simulated from a Weibull distribution |