| plgp-package | Particle Learning of Gaussian Processes |
| addpall.CGP | Add data to pall |
| addpall.ConstGP | Add data to pall |
| addpall.GP | Add data to pall |
| data.CGP | Supply GP data to PL |
| data.CGP.adapt | Supply GP data to PL |
| data.ConstGP | Supply GP data to PL |
| data.ConstGP.improv | Supply GP data to PL |
| data.GP | Supply GP data to PL |
| data.GP.improv | Supply GP data to PL |
| draw.CGP | Metropolis-Hastings draw for GP parameters |
| draw.ConstGP | Metropolis-Hastings draw for GP parameters |
| draw.GP | Metropolis-Hastings draw for GP parameters |
| exp2d.C | 2-d Exponential Hessian Data |
| init.CGP | Initialize particles for GPs |
| init.ConstGP | Initialize particles for GPs |
| init.GP | Initialize particles for GPs |
| lpredprob.CGP | Log-Predictive Probability Calculation for GPs |
| lpredprob.ConstGP | Log-Predictive Probability Calculation for GPs |
| lpredprob.GP | Log-Predictive Probability Calculation for GPs |
| papply | Extending apply to particles |
| params.CGP | Extract parameters from GP particles |
| params.ConstGP | Extract parameters from GP particles |
| params.GP | Extract parameters from GP particles |
| PL | Particle Learning Skeleton Method |
| PL.env | Particle Learning Skeleton Method |
| plgp | Particle Learning Skeleton Method |
| pred.CGP | Prediction for GPs |
| pred.ConstGP | Prediction for GPs |
| pred.GP | Prediction for GPs |
| prior.CGP | Generate priors for GP models |
| prior.ConstGP | Generate priors for GP models |
| prior.GP | Generate priors for GP models |
| propagate.CGP | PL propagate rule for GPs |
| propagate.ConstGP | PL propagate rule for GPs |
| propagate.GP | PL propagate rule for GPs |
| rectscale | Un/Scale data in a bounding rectangle |
| rectunscale | Un/Scale data in a bounding rectangle |