R version 2.12.0 (2010-10-15)
Copyright (C) 2010 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-redhat-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(16,17,23,24,27,31,40,47,43,60,64,65,65,55,57,57,57,65,69,70,71,71,73,68,65,57,41,21,21,17,9,11,6,-2,0,5,3,7,4,8,9,14,12,12,7,15,14,19,39,12,11,17,16,25,24,28,25,31,24,24),dim=c(1,60),dimnames=list(c('Werkloosheid'),1:60))
>  y <- array(NA,dim=c(1,60),dimnames=list(c('Werkloosheid'),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Werkloosheid M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1            16  1  0  0  0  0  0  0  0  0   0   0  1
2            17  0  1  0  0  0  0  0  0  0   0   0  2
3            23  0  0  1  0  0  0  0  0  0   0   0  3
4            24  0  0  0  1  0  0  0  0  0   0   0  4
5            27  0  0  0  0  1  0  0  0  0   0   0  5
6            31  0  0  0  0  0  1  0  0  0   0   0  6
7            40  0  0  0  0  0  0  1  0  0   0   0  7
8            47  0  0  0  0  0  0  0  1  0   0   0  8
9            43  0  0  0  0  0  0  0  0  1   0   0  9
10           60  0  0  0  0  0  0  0  0  0   1   0 10
11           64  0  0  0  0  0  0  0  0  0   0   1 11
12           65  0  0  0  0  0  0  0  0  0   0   0 12
13           65  1  0  0  0  0  0  0  0  0   0   0 13
14           55  0  1  0  0  0  0  0  0  0   0   0 14
15           57  0  0  1  0  0  0  0  0  0   0   0 15
16           57  0  0  0  1  0  0  0  0  0   0   0 16
17           57  0  0  0  0  1  0  0  0  0   0   0 17
18           65  0  0  0  0  0  1  0  0  0   0   0 18
19           69  0  0  0  0  0  0  1  0  0   0   0 19
20           70  0  0  0  0  0  0  0  1  0   0   0 20
21           71  0  0  0  0  0  0  0  0  1   0   0 21
22           71  0  0  0  0  0  0  0  0  0   1   0 22
23           73  0  0  0  0  0  0  0  0  0   0   1 23
24           68  0  0  0  0  0  0  0  0  0   0   0 24
25           65  1  0  0  0  0  0  0  0  0   0   0 25
26           57  0  1  0  0  0  0  0  0  0   0   0 26
27           41  0  0  1  0  0  0  0  0  0   0   0 27
28           21  0  0  0  1  0  0  0  0  0   0   0 28
29           21  0  0  0  0  1  0  0  0  0   0   0 29
30           17  0  0  0  0  0  1  0  0  0   0   0 30
31            9  0  0  0  0  0  0  1  0  0   0   0 31
32           11  0  0  0  0  0  0  0  1  0   0   0 32
33            6  0  0  0  0  0  0  0  0  1   0   0 33
34           -2  0  0  0  0  0  0  0  0  0   1   0 34
35            0  0  0  0  0  0  0  0  0  0   0   1 35
36            5  0  0  0  0  0  0  0  0  0   0   0 36
37            3  1  0  0  0  0  0  0  0  0   0   0 37
38            7  0  1  0  0  0  0  0  0  0   0   0 38
39            4  0  0  1  0  0  0  0  0  0   0   0 39
40            8  0  0  0  1  0  0  0  0  0   0   0 40
41            9  0  0  0  0  1  0  0  0  0   0   0 41
42           14  0  0  0  0  0  1  0  0  0   0   0 42
43           12  0  0  0  0  0  0  1  0  0   0   0 43
44           12  0  0  0  0  0  0  0  1  0   0   0 44
45            7  0  0  0  0  0  0  0  0  1   0   0 45
46           15  0  0  0  0  0  0  0  0  0   1   0 46
47           14  0  0  0  0  0  0  0  0  0   0   1 47
48           19  0  0  0  0  0  0  0  0  0   0   0 48
49           39  1  0  0  0  0  0  0  0  0   0   0 49
50           12  0  1  0  0  0  0  0  0  0   0   0 50
51           11  0  0  1  0  0  0  0  0  0   0   0 51
52           17  0  0  0  1  0  0  0  0  0   0   0 52
53           16  0  0  0  0  1  0  0  0  0   0   0 53
54           25  0  0  0  0  0  1  0  0  0   0   0 54
55           24  0  0  0  0  0  0  1  0  0   0   0 55
56           28  0  0  0  0  0  0  0  1  0   0   0 56
57           25  0  0  0  0  0  0  0  0  1   0   0 57
58           31  0  0  0  0  0  0  0  0  0   1   0 58
59           24  0  0  0  0  0  0  0  0  0   0   1 59
60           24  0  0  0  0  0  0  0  0  0   0   0 60
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)           M1           M2           M3           M4           M5  
    61.6000      -6.3611     -13.6556     -15.3500     -16.4444     -15.1389  
         M6           M7           M8           M9          M10          M11  
   -10.0333      -8.9278      -5.4222      -7.9167      -2.6111      -1.9056  
          t  
    -0.7056  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
   Min     1Q Median     3Q    Max 
-38.53 -14.28  -2.10  14.58  32.13 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  61.6000    11.4046   5.401 2.14e-06 ***
M1           -6.3611    13.8744  -0.458    0.649    
M2          -13.6556    13.8537  -0.986    0.329    
M3          -15.3500    13.8349  -1.110    0.273    
M4          -16.4444    13.8181  -1.190    0.240    
M5          -15.1389    13.8032  -1.097    0.278    
M6          -10.0333    13.7903  -0.728    0.470    
M7           -8.9278    13.7794  -0.648    0.520    
M8           -5.4222    13.7704  -0.394    0.696    
M9           -7.9167    13.7635  -0.575    0.568    
M10          -2.6111    13.7585  -0.190    0.850    
M11          -1.9056    13.7555  -0.139    0.890    
t            -0.7056     0.1654  -4.265 9.59e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 21.75 on 47 degrees of freedom
Multiple R-squared: 0.2995,	Adjusted R-squared: 0.1207 
F-statistic: 1.675 on 12 and 47 DF,  p-value: 0.1036 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
              [,1]         [,2]         [,3]
 [1,] 0.0171461857 3.429237e-02 9.828538e-01
 [2,] 0.0058794922 1.175898e-02 9.941205e-01
 [3,] 0.0012975051 2.595010e-03 9.987025e-01
 [4,] 0.0004687397 9.374794e-04 9.995313e-01
 [5,] 0.0004053696 8.107392e-04 9.995946e-01
 [6,] 0.0001726824 3.453649e-04 9.998273e-01
 [7,] 0.0011842805 2.368561e-03 9.988157e-01
 [8,] 0.0054676046 1.093521e-02 9.945324e-01
 [9,] 0.0318365759 6.367315e-02 9.681634e-01
[10,] 0.0732417805 1.464836e-01 9.267582e-01
[11,] 0.3219506784 6.439014e-01 6.780493e-01
[12,] 0.9262217843 1.475564e-01 7.377822e-02
[13,] 0.9973761987 5.247603e-03 2.623801e-03
[14,] 0.9999330938 1.338125e-04 6.690623e-05
[15,] 0.9999926139 1.477229e-05 7.386146e-06
[16,] 0.9999981944 3.611238e-06 1.805619e-06
[17,] 0.9999991598 1.680382e-06 8.401910e-07
[18,] 0.9999994344 1.131256e-06 5.656281e-07
[19,] 0.9999994913 1.017408e-06 5.087042e-07
[20,] 0.9999989777 2.044571e-06 1.022286e-06
[21,] 0.9999970149 5.970257e-06 2.985128e-06
[22,] 0.9999999818 3.645068e-08 1.822534e-08
[23,] 0.9999999274 1.451288e-07 7.256441e-08
[24,] 0.9999995803 8.393420e-07 4.196710e-07
[25,] 0.9999967376 6.524765e-06 3.262383e-06
[26,] 0.9999845055 3.098902e-05 1.549451e-05
[27,] 0.9998714231 2.571538e-04 1.285769e-04
[28,] 0.9989780469 2.043906e-03 1.021953e-03
[29,] 0.9936698515 1.266030e-02 6.330149e-03
> postscript(file="/var/www/wessaorg/rcomp/tmp/1d1g11293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/2obxm1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/3obxm1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/4obxm1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/5obxm1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
          1           2           3           4           5           6 
-38.5333333 -29.5333333 -21.1333333 -18.3333333 -15.9333333 -16.3333333 
          7           8           9          10          11          12 
 -7.7333333  -3.5333333  -4.3333333   8.0666667  12.0666667  11.8666667 
         13          14          15          16          17          18 
 18.9333333  16.9333333  21.3333333  23.1333333  22.5333333  26.1333333 
         19          20          21          22          23          24 
 29.7333333  27.9333333  32.1333333  27.5333333  29.5333333  23.3333333 
         25          26          27          28          29          30 
 27.4000000  27.4000000  13.8000000  -4.4000000  -5.0000000 -13.4000000 
         31          32          33          34          35          36 
-21.8000000 -22.6000000 -24.4000000 -37.0000000 -35.0000000 -31.2000000 
         37          38          39          40          41          42 
-26.1333333 -14.1333333 -14.7333333  -8.9333333  -8.5333333  -7.9333333 
         43          44          45          46          47          48 
-10.3333333 -13.1333333 -14.9333333 -11.5333333 -12.5333333  -8.7333333 
         49          50          51          52          53          54 
 18.3333333  -0.6666667   0.7333333   8.5333333   6.9333333  11.5333333 
         55          56          57          58          59          60 
 10.1333333  11.3333333  11.5333333  12.9333333   5.9333333   4.7333333 
> postscript(file="/var/www/wessaorg/rcomp/tmp/6gke71293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0         -38.5333333          NA
 1         -29.5333333 -38.5333333
 2         -21.1333333 -29.5333333
 3         -18.3333333 -21.1333333
 4         -15.9333333 -18.3333333
 5         -16.3333333 -15.9333333
 6          -7.7333333 -16.3333333
 7          -3.5333333  -7.7333333
 8          -4.3333333  -3.5333333
 9           8.0666667  -4.3333333
10          12.0666667   8.0666667
11          11.8666667  12.0666667
12          18.9333333  11.8666667
13          16.9333333  18.9333333
14          21.3333333  16.9333333
15          23.1333333  21.3333333
16          22.5333333  23.1333333
17          26.1333333  22.5333333
18          29.7333333  26.1333333
19          27.9333333  29.7333333
20          32.1333333  27.9333333
21          27.5333333  32.1333333
22          29.5333333  27.5333333
23          23.3333333  29.5333333
24          27.4000000  23.3333333
25          27.4000000  27.4000000
26          13.8000000  27.4000000
27          -4.4000000  13.8000000
28          -5.0000000  -4.4000000
29         -13.4000000  -5.0000000
30         -21.8000000 -13.4000000
31         -22.6000000 -21.8000000
32         -24.4000000 -22.6000000
33         -37.0000000 -24.4000000
34         -35.0000000 -37.0000000
35         -31.2000000 -35.0000000
36         -26.1333333 -31.2000000
37         -14.1333333 -26.1333333
38         -14.7333333 -14.1333333
39          -8.9333333 -14.7333333
40          -8.5333333  -8.9333333
41          -7.9333333  -8.5333333
42         -10.3333333  -7.9333333
43         -13.1333333 -10.3333333
44         -14.9333333 -13.1333333
45         -11.5333333 -14.9333333
46         -12.5333333 -11.5333333
47          -8.7333333 -12.5333333
48          18.3333333  -8.7333333
49          -0.6666667  18.3333333
50           0.7333333  -0.6666667
51           8.5333333   0.7333333
52           6.9333333   8.5333333
53          11.5333333   6.9333333
54          10.1333333  11.5333333
55          11.3333333  10.1333333
56          11.5333333  11.3333333
57          12.9333333  11.5333333
58           5.9333333  12.9333333
59           4.7333333   5.9333333
60                  NA   4.7333333
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]         -29.5333333 -38.5333333
 [2,]         -21.1333333 -29.5333333
 [3,]         -18.3333333 -21.1333333
 [4,]         -15.9333333 -18.3333333
 [5,]         -16.3333333 -15.9333333
 [6,]          -7.7333333 -16.3333333
 [7,]          -3.5333333  -7.7333333
 [8,]          -4.3333333  -3.5333333
 [9,]           8.0666667  -4.3333333
[10,]          12.0666667   8.0666667
[11,]          11.8666667  12.0666667
[12,]          18.9333333  11.8666667
[13,]          16.9333333  18.9333333
[14,]          21.3333333  16.9333333
[15,]          23.1333333  21.3333333
[16,]          22.5333333  23.1333333
[17,]          26.1333333  22.5333333
[18,]          29.7333333  26.1333333
[19,]          27.9333333  29.7333333
[20,]          32.1333333  27.9333333
[21,]          27.5333333  32.1333333
[22,]          29.5333333  27.5333333
[23,]          23.3333333  29.5333333
[24,]          27.4000000  23.3333333
[25,]          27.4000000  27.4000000
[26,]          13.8000000  27.4000000
[27,]          -4.4000000  13.8000000
[28,]          -5.0000000  -4.4000000
[29,]         -13.4000000  -5.0000000
[30,]         -21.8000000 -13.4000000
[31,]         -22.6000000 -21.8000000
[32,]         -24.4000000 -22.6000000
[33,]         -37.0000000 -24.4000000
[34,]         -35.0000000 -37.0000000
[35,]         -31.2000000 -35.0000000
[36,]         -26.1333333 -31.2000000
[37,]         -14.1333333 -26.1333333
[38,]         -14.7333333 -14.1333333
[39,]          -8.9333333 -14.7333333
[40,]          -8.5333333  -8.9333333
[41,]          -7.9333333  -8.5333333
[42,]         -10.3333333  -7.9333333
[43,]         -13.1333333 -10.3333333
[44,]         -14.9333333 -13.1333333
[45,]         -11.5333333 -14.9333333
[46,]         -12.5333333 -11.5333333
[47,]          -8.7333333 -12.5333333
[48,]          18.3333333  -8.7333333
[49,]          -0.6666667  18.3333333
[50,]           0.7333333  -0.6666667
[51,]           8.5333333   0.7333333
[52,]           6.9333333   8.5333333
[53,]          11.5333333   6.9333333
[54,]          10.1333333  11.5333333
[55,]          11.3333333  10.1333333
[56,]          11.5333333  11.3333333
[57,]          12.9333333  11.5333333
[58,]           5.9333333  12.9333333
[59,]           4.7333333   5.9333333
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1          -29.5333333 -38.5333333
2          -21.1333333 -29.5333333
3          -18.3333333 -21.1333333
4          -15.9333333 -18.3333333
5          -16.3333333 -15.9333333
6           -7.7333333 -16.3333333
7           -3.5333333  -7.7333333
8           -4.3333333  -3.5333333
9            8.0666667  -4.3333333
10          12.0666667   8.0666667
11          11.8666667  12.0666667
12          18.9333333  11.8666667
13          16.9333333  18.9333333
14          21.3333333  16.9333333
15          23.1333333  21.3333333
16          22.5333333  23.1333333
17          26.1333333  22.5333333
18          29.7333333  26.1333333
19          27.9333333  29.7333333
20          32.1333333  27.9333333
21          27.5333333  32.1333333
22          29.5333333  27.5333333
23          23.3333333  29.5333333
24          27.4000000  23.3333333
25          27.4000000  27.4000000
26          13.8000000  27.4000000
27          -4.4000000  13.8000000
28          -5.0000000  -4.4000000
29         -13.4000000  -5.0000000
30         -21.8000000 -13.4000000
31         -22.6000000 -21.8000000
32         -24.4000000 -22.6000000
33         -37.0000000 -24.4000000
34         -35.0000000 -37.0000000
35         -31.2000000 -35.0000000
36         -26.1333333 -31.2000000
37         -14.1333333 -26.1333333
38         -14.7333333 -14.1333333
39          -8.9333333 -14.7333333
40          -8.5333333  -8.9333333
41          -7.9333333  -8.5333333
42         -10.3333333  -7.9333333
43         -13.1333333 -10.3333333
44         -14.9333333 -13.1333333
45         -11.5333333 -14.9333333
46         -12.5333333 -11.5333333
47          -8.7333333 -12.5333333
48          18.3333333  -8.7333333
49          -0.6666667  18.3333333
50           0.7333333  -0.6666667
51           8.5333333   0.7333333
52           6.9333333   8.5333333
53          11.5333333   6.9333333
54          10.1333333  11.5333333
55          11.3333333  10.1333333
56          11.5333333  11.3333333
57          12.9333333  11.5333333
58           5.9333333  12.9333333
59           4.7333333   5.9333333
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/7rtes1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/8rtes1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/wessaorg/rcomp/tmp/9rtes1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/wessaorg/rcomp/tmp/1023dv1293648893.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/wessaorg/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/wessaorg/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/wessaorg/rcomp/tmp/115lt11293648893.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/wessaorg/rcomp/tmp/12q3s71293648893.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/wessaorg/rcomp/tmp/135vqg1293648893.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/wessaorg/rcomp/tmp/148wom1293648893.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/wessaorg/rcomp/tmp/15cxna1293648893.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/wessaorg/rcomp/tmp/16fx3f1293648893.tab") 
+ }
> 
> try(system("convert tmp/1d1g11293648893.ps tmp/1d1g11293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/2obxm1293648893.ps tmp/2obxm1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/3obxm1293648893.ps tmp/3obxm1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/4obxm1293648893.ps tmp/4obxm1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/5obxm1293648893.ps tmp/5obxm1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/6gke71293648893.ps tmp/6gke71293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/7rtes1293648893.ps tmp/7rtes1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/8rtes1293648893.ps tmp/8rtes1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/9rtes1293648893.ps tmp/9rtes1293648893.png",intern=TRUE))
character(0)
> try(system("convert tmp/1023dv1293648893.ps tmp/1023dv1293648893.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
   2.93    0.50    3.59