R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(45990,42904,49968,42831,42110,45002,42091,39457,44448,48208,49603,48093,43130,45599,52287,49732,49571,48933,49203,45018,49405,56007,61858,55740,48827,52043,60348,55615,56852,55630,56457,50013,56291,52477,59846,55732,49114,55382,61102,61219,55785,57941,58844,51479,59968,60747,61532,61292,55164,56292,66015,60829,57571,57619,55304,54181,61033,63886,67365,63707,53473,52531,62703,61004,60438,65272,64463,62449,67373,70307,75544,71966,66263,69550,75388,57716,55779,52927,45655,46487,48683,50010,48944,41341,32411,34763,39106,34472,32642,34248,32280,29990,29656,34071,34105,33717) > par10 = 'FALSE' > par9 = '1' > par8 = '1' > par7 = '0' > par6 = '0' > par5 = '12' > par4 = '0' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp#output/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: sar1 sma1 0.9982 -0.9238 s.e. 0.0092 0.1947 sigma^2 estimated as 9865366: log likelihood = -798.73, aic = 1603.45 Warning message: In arima(x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, : possible convergence problem: optim gave code=1 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 85 End = 96 Frequency = 1 [1] 35159.83 36802.97 43868.36 38612.36 37161.84 37832.52 36265.33 33319.40 [9] 38310.14 40200.64 43188.52 39604.20 $se Time Series: Start = 85 End = 96 Frequency = 1 [1] 3264.451 4598.608 5624.744 6490.632 7253.885 7944.143 8579.042 [8] 9170.088 9725.280 10250.445 10749.985 11227.321 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 85 End = 96 Frequency = 1 [1] 28761.51 27789.69 32843.87 25890.72 22944.22 22262.00 19450.41 15346.03 [9] 19248.59 20109.76 22118.55 17598.65 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 85 End = 96 Frequency = 1 [1] 41558.15 45816.24 54892.86 51334.00 51379.45 53403.04 53080.26 51292.77 [9] 57371.68 60291.51 64258.49 61609.75 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 45990.00 42904.00 49968.00 42831.00 42110.00 45002.00 42091.00 39457.00 [9] 44448.00 48208.00 49603.00 48093.00 43130.00 45599.00 52287.00 49732.00 [17] 49571.00 48933.00 49203.00 45018.00 49405.00 56007.00 61858.00 55740.00 [25] 48827.00 52043.00 60348.00 55615.00 56852.00 55630.00 56457.00 50013.00 [33] 56291.00 52477.00 59846.00 55732.00 49114.00 55382.00 61102.00 61219.00 [41] 55785.00 57941.00 58844.00 51479.00 59968.00 60747.00 61532.00 61292.00 [49] 55164.00 56292.00 66015.00 60829.00 57571.00 57619.00 55304.00 54181.00 [57] 61033.00 63886.00 67365.00 63707.00 53473.00 52531.00 62703.00 61004.00 [65] 60438.00 65272.00 64463.00 62449.00 67373.00 70307.00 75544.00 71966.00 [73] 66263.00 69550.00 75388.00 57716.00 55779.00 52927.00 45655.00 46487.00 [81] 48683.00 50010.00 48944.00 41341.00 35159.83 36802.97 43868.36 38612.36 [89] 37161.84 37832.52 36265.33 33319.40 38310.14 40200.64 43188.52 39604.20 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 85 End = 96 Frequency = 1 [1] 0.09284604 0.12495210 0.12821869 0.16809726 0.19519717 0.20998186 [7] 0.23656315 0.27521767 0.25385658 0.25498216 0.24890838 0.28348813 > postscript(file="/var/www/rcomp/tmp/11eay1293635069.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2x6871293635069.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3wgm41293635069.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/40h3s1293635069.tab") > > try(system("convert tmp/11eay1293635069.ps tmp/11eay1293635069.png",intern=TRUE)) character(0) > try(system("convert tmp/2x6871293635069.ps tmp/2x6871293635069.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.920 0.250 1.151