R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(313.737,312.276,309.391,302.950,300.316,304.035,333.476,337.698,335.932,323.931,313.927,314.485,313.218,309.664,302.963,298.989,298.423,301.631,329.765,335.083,327.616,309.119,295.916,291.413,291.542,284.678,276.475,272.566,264.981,263.290,296.806,303.598,286.994,276.427,266.424,267.153,268.381,262.522,255.542,253.158,243.803,250.741,280.445,285.257,270.976,261.076,255.603,260.376,263.903,264.291,263.276,262.572,256.167,264.221,293.860,300.713,287.224,275.902,271.115,277.509,279.681,276.239,271.037,266.148,259.497,266.795,298.305,303.725,289.742,276.444,268.606) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '4' > par4 = '1' > par3 = '1' > par2 = '2.0' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp#output/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 sma1 0.4483 -0.2314 -0.2561 -1.0000 s.e. 0.1330 0.1439 0.1350 0.1328 sigma^2 estimated as 25769071: log likelihood = -543.5, aic = 1096.99 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 60 End = 71 Frequency = 1 [1] 73723.80 73022.98 73267.81 77281.10 77091.11 72976.15 70086.61 73589.72 [9] 74770.68 72191.23 69803.58 72825.29 $se Time Series: Start = 60 End = 71 Frequency = 1 [1] 5256.084 9250.912 11870.924 13076.444 13793.628 14473.521 15348.161 [8] 16388.991 17524.131 18540.728 19390.372 20145.622 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 60 End = 71 Frequency = 1 [1] 63421.88 54891.19 50000.80 51651.27 50055.60 44608.05 40004.22 41467.30 [9] 40423.38 35851.40 31798.45 33339.87 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 60 End = 71 Frequency = 1 [1] 84025.73 91154.77 96534.82 102910.93 104126.62 101344.26 100169.01 [8] 105712.14 109117.98 108531.06 107808.71 112310.71 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 313.7370 312.2760 309.3910 302.9500 300.3160 304.0350 333.4760 337.6980 [9] 335.9320 323.9310 313.9270 314.4850 313.2180 309.6640 302.9630 298.9890 [17] 298.4230 301.6310 329.7650 335.0830 327.6160 309.1190 295.9160 291.4130 [25] 291.5420 284.6780 276.4750 272.5660 264.9810 263.2900 296.8060 303.5980 [33] 286.9940 276.4270 266.4240 267.1530 268.3810 262.5220 255.5420 253.1580 [41] 243.8030 250.7410 280.4450 285.2570 270.9760 261.0760 255.6030 260.3760 [49] 263.9030 264.2910 263.2760 262.5720 256.1670 264.2210 293.8600 300.7130 [57] 287.2240 275.9020 271.1150 271.5213 270.2276 270.6803 277.9948 277.6529 [65] 270.1410 264.7388 271.2743 273.4423 268.6843 264.2037 269.8616 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 60 End = 71 Frequency = 1 [1] 0.03448191 0.05983397 0.07543401 0.07855556 0.08275219 0.09104304 [7] 0.09974430 0.10129779 0.10614452 0.11536997 0.12385832 0.12339334 > postscript(file="/var/www/html/rcomp/tmp/15ojb1293395574.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/2jyhk1293395574.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3iqdh1293395574.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/449u51293395574.tab") > > try(system("convert tmp/15ojb1293395574.ps tmp/15ojb1293395574.png",intern=TRUE)) character(0) > try(system("convert tmp/2jyhk1293395574.ps tmp/2jyhk1293395574.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.605 0.317 1.334