R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(104.31,103.88,103.88,103.86,103.89,103.98,103.98,104.29,104.29,104.24,103.98,103.54,103.44,103.32,103.3,103.26,103.14,103.11,102.91,103.23,103.23,103.14,102.91,102.42,102.1,102.07,102.06,101.98,101.83,101.75,101.56,101.66,101.65,101.61,101.52,101.31,101.19,101.11,101.1,101.07,100.98,100.93,100.92,101.02,101.01,100.97,100.89,100.62,100.53,100.48,100.48,100.47,100.52,100.49,100.47,100.44),dim=c(1,56),dimnames=list(c('consumptieindexprijskleding'),1:56))
>  y <- array(NA,dim=c(1,56),dimnames=list(c('consumptieindexprijskleding'),1:56))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   consumptieindexprijskleding M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1                       104.31  1  0  0  0  0  0  0  0  0   0   0  1
2                       103.88  0  1  0  0  0  0  0  0  0   0   0  2
3                       103.88  0  0  1  0  0  0  0  0  0   0   0  3
4                       103.86  0  0  0  1  0  0  0  0  0   0   0  4
5                       103.89  0  0  0  0  1  0  0  0  0   0   0  5
6                       103.98  0  0  0  0  0  1  0  0  0   0   0  6
7                       103.98  0  0  0  0  0  0  1  0  0   0   0  7
8                       104.29  0  0  0  0  0  0  0  1  0   0   0  8
9                       104.29  0  0  0  0  0  0  0  0  1   0   0  9
10                      104.24  0  0  0  0  0  0  0  0  0   1   0 10
11                      103.98  0  0  0  0  0  0  0  0  0   0   1 11
12                      103.54  0  0  0  0  0  0  0  0  0   0   0 12
13                      103.44  1  0  0  0  0  0  0  0  0   0   0 13
14                      103.32  0  1  0  0  0  0  0  0  0   0   0 14
15                      103.30  0  0  1  0  0  0  0  0  0   0   0 15
16                      103.26  0  0  0  1  0  0  0  0  0   0   0 16
17                      103.14  0  0  0  0  1  0  0  0  0   0   0 17
18                      103.11  0  0  0  0  0  1  0  0  0   0   0 18
19                      102.91  0  0  0  0  0  0  1  0  0   0   0 19
20                      103.23  0  0  0  0  0  0  0  1  0   0   0 20
21                      103.23  0  0  0  0  0  0  0  0  1   0   0 21
22                      103.14  0  0  0  0  0  0  0  0  0   1   0 22
23                      102.91  0  0  0  0  0  0  0  0  0   0   1 23
24                      102.42  0  0  0  0  0  0  0  0  0   0   0 24
25                      102.10  1  0  0  0  0  0  0  0  0   0   0 25
26                      102.07  0  1  0  0  0  0  0  0  0   0   0 26
27                      102.06  0  0  1  0  0  0  0  0  0   0   0 27
28                      101.98  0  0  0  1  0  0  0  0  0   0   0 28
29                      101.83  0  0  0  0  1  0  0  0  0   0   0 29
30                      101.75  0  0  0  0  0  1  0  0  0   0   0 30
31                      101.56  0  0  0  0  0  0  1  0  0   0   0 31
32                      101.66  0  0  0  0  0  0  0  1  0   0   0 32
33                      101.65  0  0  0  0  0  0  0  0  1   0   0 33
34                      101.61  0  0  0  0  0  0  0  0  0   1   0 34
35                      101.52  0  0  0  0  0  0  0  0  0   0   1 35
36                      101.31  0  0  0  0  0  0  0  0  0   0   0 36
37                      101.19  1  0  0  0  0  0  0  0  0   0   0 37
38                      101.11  0  1  0  0  0  0  0  0  0   0   0 38
39                      101.10  0  0  1  0  0  0  0  0  0   0   0 39
40                      101.07  0  0  0  1  0  0  0  0  0   0   0 40
41                      100.98  0  0  0  0  1  0  0  0  0   0   0 41
42                      100.93  0  0  0  0  0  1  0  0  0   0   0 42
43                      100.92  0  0  0  0  0  0  1  0  0   0   0 43
44                      101.02  0  0  0  0  0  0  0  1  0   0   0 44
45                      101.01  0  0  0  0  0  0  0  0  1   0   0 45
46                      100.97  0  0  0  0  0  0  0  0  0   1   0 46
47                      100.89  0  0  0  0  0  0  0  0  0   0   1 47
48                      100.62  0  0  0  0  0  0  0  0  0   0   0 48
49                      100.53  1  0  0  0  0  0  0  0  0   0   0 49
50                      100.48  0  1  0  0  0  0  0  0  0   0   0 50
51                      100.48  0  0  1  0  0  0  0  0  0   0   0 51
52                      100.47  0  0  0  1  0  0  0  0  0   0   0 52
53                      100.52  0  0  0  0  1  0  0  0  0   0   0 53
54                      100.49  0  0  0  0  0  1  0  0  0   0   0 54
55                      100.47  0  0  0  0  0  0  1  0  0   0   0 55
56                      100.44  0  0  0  0  0  0  0  1  0   0   0 56
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)           M1           M2           M3           M4           M5  
 104.357875    -0.056062    -0.118550    -0.047038    -0.003525     0.019987  
         M6           M7           M8           M9          M10          M11  
   0.079500     0.075012     0.314525     0.333962     0.358475     0.272987  
          t  
  -0.079513  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
      Min        1Q    Median        3Q       Max 
-0.468000 -0.157350 -0.007963  0.178850  0.410300 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 104.357875   0.138550 753.216   <2e-16 ***
M1           -0.056062   0.166580  -0.337   0.7381    
M2           -0.118550   0.166465  -0.712   0.4802    
M3           -0.047038   0.166375  -0.283   0.7787    
M4           -0.003525   0.166311  -0.021   0.9832    
M5            0.019987   0.166272   0.120   0.9049    
M6            0.079500   0.166260   0.478   0.6350    
M7            0.075012   0.166272   0.451   0.6542    
M8            0.314525   0.166311   1.891   0.0653 .  
M9            0.333962   0.175363   1.904   0.0636 .  
M10           0.358475   0.175302   2.045   0.0470 *  
M11           0.272987   0.175265   1.558   0.1267    
t            -0.079513   0.002065 -38.498   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.2478 on 43 degrees of freedom
Multiple R-squared: 0.9723,	Adjusted R-squared: 0.9646 
F-statistic: 125.8 on 12 and 43 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
            [,1]         [,2]         [,3]
 [1,] 0.08339426 0.1667885263 0.9166057368
 [2,] 0.03477509 0.0695501895 0.9652249053
 [3,] 0.02760397 0.0552079338 0.9723960331
 [4,] 0.06308849 0.1261769848 0.9369115076
 [5,] 0.09494863 0.1898972672 0.9050513664
 [6,] 0.17165206 0.3433041285 0.8283479357
 [7,] 0.38942354 0.7788470725 0.6105764637
 [8,] 0.70164246 0.5967150843 0.2983575422
 [9,] 0.86911470 0.2617705933 0.1308852967
[10,] 0.95602220 0.0879556041 0.0439778021
[11,] 0.97270366 0.0545926757 0.0272963379
[12,] 0.99141078 0.0171784456 0.0085892228
[13,] 0.99859631 0.0028073757 0.0014036878
[14,] 0.99940021 0.0011995794 0.0005997897
[15,] 0.99979668 0.0004066340 0.0002033170
[16,] 0.99972977 0.0005404647 0.0002702324
[17,] 0.99981405 0.0003718980 0.0001859490
[18,] 0.99978022 0.0004395679 0.0002197840
[19,] 0.99961889 0.0007622204 0.0003811102
[20,] 0.99899755 0.0020048924 0.0010024462
[21,] 0.99845588 0.0030882409 0.0015441205
[22,] 0.99736798 0.0052640326 0.0026320163
[23,] 0.99493129 0.0101374209 0.0050687104
[24,] 0.99093130 0.0181373945 0.0090686972
[25,] 0.98514050 0.0297189972 0.0148594986
> postscript(file="/var/www/html/rcomp/tmp/1w7jh1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2w7jh1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/37gi21293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/47gi21293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/57gi21293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 56 
Frequency = 1 
        1         2         3         4         5         6         7         8 
 0.087700 -0.200300 -0.192300 -0.176300 -0.090300  0.019700  0.103700  0.253700 
        9        10        11        12        13        14        15        16 
 0.313775  0.318775  0.223775  0.136275  0.171850  0.193850  0.181850  0.177850 
       17        18        19        20        21        22        23        24 
 0.113850  0.103850 -0.012150  0.147850  0.207925  0.172925  0.107925 -0.029575 
       25        26        27        28        29        30        31        32 
-0.214000 -0.102000 -0.104000 -0.148000 -0.242000 -0.302000 -0.408000 -0.468000 
       33        34        35        36        37        38        39        40 
-0.417925 -0.402925 -0.327925 -0.185425 -0.169850 -0.107850 -0.109850 -0.103850 
       41        42        43        44        45        46        47        48 
-0.137850 -0.167850 -0.093850 -0.153850 -0.103775 -0.088775 -0.003775  0.078725 
       49        50        51        52        53        54        55        56 
 0.124300  0.216300  0.224300  0.250300  0.356300  0.346300  0.410300  0.220300 
> postscript(file="/var/www/html/rcomp/tmp/6z8hn1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 56 
Frequency = 1 
   lag(myerror, k = 1)   myerror
 0            0.087700        NA
 1           -0.200300  0.087700
 2           -0.192300 -0.200300
 3           -0.176300 -0.192300
 4           -0.090300 -0.176300
 5            0.019700 -0.090300
 6            0.103700  0.019700
 7            0.253700  0.103700
 8            0.313775  0.253700
 9            0.318775  0.313775
10            0.223775  0.318775
11            0.136275  0.223775
12            0.171850  0.136275
13            0.193850  0.171850
14            0.181850  0.193850
15            0.177850  0.181850
16            0.113850  0.177850
17            0.103850  0.113850
18           -0.012150  0.103850
19            0.147850 -0.012150
20            0.207925  0.147850
21            0.172925  0.207925
22            0.107925  0.172925
23           -0.029575  0.107925
24           -0.214000 -0.029575
25           -0.102000 -0.214000
26           -0.104000 -0.102000
27           -0.148000 -0.104000
28           -0.242000 -0.148000
29           -0.302000 -0.242000
30           -0.408000 -0.302000
31           -0.468000 -0.408000
32           -0.417925 -0.468000
33           -0.402925 -0.417925
34           -0.327925 -0.402925
35           -0.185425 -0.327925
36           -0.169850 -0.185425
37           -0.107850 -0.169850
38           -0.109850 -0.107850
39           -0.103850 -0.109850
40           -0.137850 -0.103850
41           -0.167850 -0.137850
42           -0.093850 -0.167850
43           -0.153850 -0.093850
44           -0.103775 -0.153850
45           -0.088775 -0.103775
46           -0.003775 -0.088775
47            0.078725 -0.003775
48            0.124300  0.078725
49            0.216300  0.124300
50            0.224300  0.216300
51            0.250300  0.224300
52            0.356300  0.250300
53            0.346300  0.356300
54            0.410300  0.346300
55            0.220300  0.410300
56                  NA  0.220300
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)   myerror
 [1,]           -0.200300  0.087700
 [2,]           -0.192300 -0.200300
 [3,]           -0.176300 -0.192300
 [4,]           -0.090300 -0.176300
 [5,]            0.019700 -0.090300
 [6,]            0.103700  0.019700
 [7,]            0.253700  0.103700
 [8,]            0.313775  0.253700
 [9,]            0.318775  0.313775
[10,]            0.223775  0.318775
[11,]            0.136275  0.223775
[12,]            0.171850  0.136275
[13,]            0.193850  0.171850
[14,]            0.181850  0.193850
[15,]            0.177850  0.181850
[16,]            0.113850  0.177850
[17,]            0.103850  0.113850
[18,]           -0.012150  0.103850
[19,]            0.147850 -0.012150
[20,]            0.207925  0.147850
[21,]            0.172925  0.207925
[22,]            0.107925  0.172925
[23,]           -0.029575  0.107925
[24,]           -0.214000 -0.029575
[25,]           -0.102000 -0.214000
[26,]           -0.104000 -0.102000
[27,]           -0.148000 -0.104000
[28,]           -0.242000 -0.148000
[29,]           -0.302000 -0.242000
[30,]           -0.408000 -0.302000
[31,]           -0.468000 -0.408000
[32,]           -0.417925 -0.468000
[33,]           -0.402925 -0.417925
[34,]           -0.327925 -0.402925
[35,]           -0.185425 -0.327925
[36,]           -0.169850 -0.185425
[37,]           -0.107850 -0.169850
[38,]           -0.109850 -0.107850
[39,]           -0.103850 -0.109850
[40,]           -0.137850 -0.103850
[41,]           -0.167850 -0.137850
[42,]           -0.093850 -0.167850
[43,]           -0.153850 -0.093850
[44,]           -0.103775 -0.153850
[45,]           -0.088775 -0.103775
[46,]           -0.003775 -0.088775
[47,]            0.078725 -0.003775
[48,]            0.124300  0.078725
[49,]            0.216300  0.124300
[50,]            0.224300  0.216300
[51,]            0.250300  0.224300
[52,]            0.356300  0.250300
[53,]            0.346300  0.356300
[54,]            0.410300  0.346300
[55,]            0.220300  0.410300
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)   myerror
1            -0.200300  0.087700
2            -0.192300 -0.200300
3            -0.176300 -0.192300
4            -0.090300 -0.176300
5             0.019700 -0.090300
6             0.103700  0.019700
7             0.253700  0.103700
8             0.313775  0.253700
9             0.318775  0.313775
10            0.223775  0.318775
11            0.136275  0.223775
12            0.171850  0.136275
13            0.193850  0.171850
14            0.181850  0.193850
15            0.177850  0.181850
16            0.113850  0.177850
17            0.103850  0.113850
18           -0.012150  0.103850
19            0.147850 -0.012150
20            0.207925  0.147850
21            0.172925  0.207925
22            0.107925  0.172925
23           -0.029575  0.107925
24           -0.214000 -0.029575
25           -0.102000 -0.214000
26           -0.104000 -0.102000
27           -0.148000 -0.104000
28           -0.242000 -0.148000
29           -0.302000 -0.242000
30           -0.408000 -0.302000
31           -0.468000 -0.408000
32           -0.417925 -0.468000
33           -0.402925 -0.417925
34           -0.327925 -0.402925
35           -0.185425 -0.327925
36           -0.169850 -0.185425
37           -0.107850 -0.169850
38           -0.109850 -0.107850
39           -0.103850 -0.109850
40           -0.137850 -0.103850
41           -0.167850 -0.137850
42           -0.093850 -0.167850
43           -0.153850 -0.093850
44           -0.103775 -0.153850
45           -0.088775 -0.103775
46           -0.003775 -0.088775
47            0.078725 -0.003775
48            0.124300  0.078725
49            0.216300  0.124300
50            0.224300  0.216300
51            0.250300  0.224300
52            0.356300  0.250300
53            0.346300  0.356300
54            0.410300  0.346300
55            0.220300  0.410300
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7ahhq1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8ahhq1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9ahhq1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/1038yt1293023227.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/116rxh1293023227.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12r9d51293023227.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/1361be1293023227.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14rkr11293023227.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15kt941293023227.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16g36v1293023227.tab") 
+ }
> 
> try(system("convert tmp/1w7jh1293023227.ps tmp/1w7jh1293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/2w7jh1293023227.ps tmp/2w7jh1293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/37gi21293023227.ps tmp/37gi21293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/47gi21293023227.ps tmp/47gi21293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/57gi21293023227.ps tmp/57gi21293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/6z8hn1293023227.ps tmp/6z8hn1293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/7ahhq1293023227.ps tmp/7ahhq1293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/8ahhq1293023227.ps tmp/8ahhq1293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/9ahhq1293023227.ps tmp/9ahhq1293023227.png",intern=TRUE))
character(0)
> try(system("convert tmp/1038yt1293023227.ps tmp/1038yt1293023227.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.460   1.654   6.437