R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(5,4,5,6,6,6,7,8,7,8,7,8,8,9,9,8,9,9,10,11,12,13,13,13,14,14,15,15,16,16,17,18,19,20,22,20,22,25,24,25,28,26,27,26,25,27,28,30,31,32,34,34,33,32,34,36,37,40,38,38,36,40,40,42,44,45,47,49,47,49,52,50,50,57,58,58,58,61,61,64,68,40,34,46,36,34,45,55,50,56,72,76,78,77,90,88,97,93,84,67,72,75,71,75,90,78,73,62,65,61,58,33,39,56,79,82,79,73,87,85,83,82,83,92,95,97,87,84,84,89,103,106,109,106,105,115,120,124,121,131,139,133,119,123,120,128,134,126,115,106,99,100,99,99,100,100,108,109,115,114,108,113,118,122,118,121,118,121,121,112,119,116,110,111,106,108) > par10 = 'FALSE' > par9 = '0' > par8 = '1' > par7 = '0' > par6 = '0' > par5 = '1' > par4 = '0' > par3 = '1' > par2 = '0.2' > par1 = '20' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: sar1 0.0811 s.e. 0.0802 sigma^2 estimated as 0.002452: log likelihood = 245.92, aic = -487.84 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 157 End = 176 Frequency = 1 [1] 2.511886 2.511886 2.511886 2.511886 2.511886 2.511886 2.511886 2.511886 [9] 2.511886 2.511886 2.511886 2.511886 2.511886 2.511886 2.511886 2.511886 [17] 2.511886 2.511886 2.511886 2.511886 $se Time Series: Start = 157 End = 176 Frequency = 1 [1] 0.04951270 0.07291498 0.09064557 0.10544898 0.11841700 0.13009882 [7] 0.14081484 0.15077114 0.16010951 0.16893246 0.17731693 0.18532245 [13] 0.19299619 0.20037626 0.20749401 0.21437557 0.22104299 0.22751510 [19] 0.23380812 0.23993615 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 157 End = 176 Frequency = 1 [1] 2.414842 2.368973 2.334221 2.305206 2.279789 2.256893 2.235889 2.216375 [9] 2.198072 2.180779 2.164345 2.148654 2.133614 2.119149 2.105198 2.091710 [17] 2.078642 2.065957 2.053623 2.041612 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 157 End = 176 Frequency = 1 [1] 2.608931 2.654800 2.689552 2.718566 2.743984 2.766880 2.787884 2.807398 [9] 2.825701 2.842994 2.859428 2.875118 2.890159 2.904624 2.918575 2.932063 [17] 2.945131 2.957816 2.970150 2.982161 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 5 4 5 6 6 6 7 8 7 8 7 8 8 9 9 8 9 9 [19] 10 11 12 13 13 13 14 14 15 15 16 16 17 18 19 20 22 20 [37] 22 25 24 25 28 26 27 26 25 27 28 30 31 32 34 34 33 32 [55] 34 36 37 40 38 38 36 40 40 42 44 45 47 49 47 49 52 50 [73] 50 57 58 58 58 61 61 64 68 40 34 46 36 34 45 55 50 56 [91] 72 76 78 77 90 88 97 93 84 67 72 75 71 75 90 78 73 62 [109] 65 61 58 33 39 56 79 82 79 73 87 85 83 82 83 92 95 97 [127] 87 84 84 89 103 106 109 106 105 115 120 124 121 131 139 133 119 123 [145] 120 128 134 126 115 106 99 100 99 99 100 100 100 100 100 100 100 100 [163] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 157 End = 176 Frequency = 1 [1] 0.1064721 0.1626220 0.2078274 0.2474024 0.2834872 0.3171580 0.3490410 [8] 0.3795372 0.4089218 0.4373929 0.4650987 0.4921534 0.5186471 0.5446526 [15] 0.5702293 0.5954266 0.6202861 0.6448431 0.6691280 0.6931670 > postscript(file="/var/www/rcomp/tmp/10tmh1292848755.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/27cjt1292848755.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3dvg51292848755.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/4r6z51292848756.tab") > > try(system("convert tmp/10tmh1292848755.ps tmp/10tmh1292848755.png",intern=TRUE)) character(0) > try(system("convert tmp/27cjt1292848755.ps tmp/27cjt1292848755.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.750 0.330 1.063