R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(36700,35600,80900,174000,169422,153452,173570,193036,174652,105367,95963,82896,121747,120196,103983,81103,70944,57248,47830,60095,60931,82955,99559,77911,70753,69287,88426,91756,96933,174484,232595,266197,290435,304296,322310,415555,490042,545109,545720,505944,477930,466106,424476,383018,364696,391116,435721,511435,553997,555252,544897,540562,505282,507626,474427,469740,491480,538974,576612) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '0' > par6 = '1' > par5 = '1' > par4 = '0' > par3 = '2' > par2 = '1' > par1 = '24' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 sma1 0.4189 -1.0000 s.e. 0.1631 0.1986 sigma^2 estimated as 796375846: log likelihood = -386.34, aic = 778.68 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 36 End = 59 Frequency = 1 [1] 334738.5 344827.5 353936.5 362634.9 371161.5 379616.0 388040.4 396452.1 [9] 404858.5 413262.7 421666.0 430068.9 438471.6 446874.2 455276.9 463679.5 [17] 472082.1 480484.7 488887.3 497289.9 505692.5 514095.1 522497.7 530900.3 $se Time Series: Start = 36 End = 59 Frequency = 1 [1] 28615.23 50309.66 69178.98 85814.88 100798.69 114570.94 127442.66 [8] 139630.57 151287.08 162521.40 173413.50 184023.32 194396.74 204569.59 [15] 214570.34 224421.98 234143.31 243749.93 253254.89 262669.22 272002.34 [22] 281262.33 290456.17 299589.98 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 36 End = 59 Frequency = 1 [1] 278652.701 246220.568 218345.662 194437.776 173596.049 155056.955 [7] 138252.738 122776.150 108335.808 94720.758 81775.514 69383.150 [13] 57453.964 45917.832 34718.987 23812.395 13161.189 2734.821 [19] -7492.291 -17541.777 -27432.079 -37179.045 -46796.383 -56296.028 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 36 End = 59 Frequency = 1 [1] 390824.4 443434.4 489527.3 530832.1 568726.9 604175.1 637828.0 [8] 670128.0 701381.2 731804.6 761556.4 790754.6 819489.2 847830.6 [15] 875834.7 903546.6 931003.0 958234.6 985266.9 1012121.6 1038817.1 [22] 1065369.3 1091791.8 1118096.7 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 36700.0 35600.0 80900.0 174000.0 169422.0 153452.0 173570.0 193036.0 [9] 174652.0 105367.0 95963.0 82896.0 121747.0 120196.0 103983.0 81103.0 [17] 70944.0 57248.0 47830.0 60095.0 60931.0 82955.0 99559.0 77911.0 [25] 70753.0 69287.0 88426.0 91756.0 96933.0 174484.0 232595.0 266197.0 [33] 290435.0 304296.0 322310.0 334738.5 344827.5 353936.5 362634.9 371161.5 [41] 379616.0 388040.4 396452.1 404858.5 413262.7 421666.0 430068.9 438471.6 [49] 446874.2 455276.9 463679.5 472082.1 480484.7 488887.3 497289.9 505692.5 [57] 514095.1 522497.7 530900.3 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 36 End = 59 Frequency = 1 [1] 0.0854853 0.1458980 0.1954559 0.2366426 0.2715764 0.3018075 0.3284263 [8] 0.3522004 0.3736789 0.3932641 0.4112580 0.4278927 0.4433508 0.4577789 [15] 0.4712964 0.4840024 0.4959801 0.5073001 0.5180231 0.5282014 0.5378809 [22] 0.5471017 0.5558994 0.5643055 > postscript(file="/var/www/html/rcomp/tmp/1zbjd1292772650.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/html/rcomp/tmp/26uy71292772650.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3vvdj1292772650.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/4gwc71292772650.tab") > > try(system("convert tmp/1zbjd1292772650.ps tmp/1zbjd1292772650.png",intern=TRUE)) character(0) > try(system("convert tmp/26uy71292772650.ps tmp/26uy71292772650.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.633 0.333 1.323