R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(300,2.26,302,2.57,400,3.07,392,2.76,373,2.51,379,2.87,303,3.14,324,3.11,353,3.16,392,2.47,327,2.57,376,2.89,329,2.63,359,2.38,413,1.69,338,1.96,422,2.19,390,1.87,370,1.60,367,1.63,406,1.22,418,1.21,346,1.49,350,1.64,330,1.66,318,1.77,382,1.82,337,1.78,372,1.28,422,1.29,428,1.37,426,1.12,396,1.51,458,2.24,315,2.94,337,3.09,386,3.46,352,3.64,383,4.39,439,4.15,397,5.21,453,5.80,363,5.91,365,5.39,474,5.46,373,4.72,403,3.14,384,2.63,364,2.32,361,1.93,419,0.62,352,0.60,363,-0.37,410,-1.10,361,-1.68,383,-0.78,342,-1.19,369,-0.79,361,-0.12,317,0.26,386,0.62,318,0.70,407,1.66,393,1.80,404,2.27,498,2.46,438,2.57),dim=c(2,67),dimnames=list(c('Aantal_vergunningen','Inflatie'),1:67))
>  y <- array(NA,dim=c(2,67),dimnames=list(c('Aantal_vergunningen','Inflatie'),1:67))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
   Aantal_vergunningen Inflatie M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1                  300     2.26  1  0  0  0  0  0  0  0  0   0   0
2                  302     2.57  0  1  0  0  0  0  0  0  0   0   0
3                  400     3.07  0  0  1  0  0  0  0  0  0   0   0
4                  392     2.76  0  0  0  1  0  0  0  0  0   0   0
5                  373     2.51  0  0  0  0  1  0  0  0  0   0   0
6                  379     2.87  0  0  0  0  0  1  0  0  0   0   0
7                  303     3.14  0  0  0  0  0  0  1  0  0   0   0
8                  324     3.11  0  0  0  0  0  0  0  1  0   0   0
9                  353     3.16  0  0  0  0  0  0  0  0  1   0   0
10                 392     2.47  0  0  0  0  0  0  0  0  0   1   0
11                 327     2.57  0  0  0  0  0  0  0  0  0   0   1
12                 376     2.89  0  0  0  0  0  0  0  0  0   0   0
13                 329     2.63  1  0  0  0  0  0  0  0  0   0   0
14                 359     2.38  0  1  0  0  0  0  0  0  0   0   0
15                 413     1.69  0  0  1  0  0  0  0  0  0   0   0
16                 338     1.96  0  0  0  1  0  0  0  0  0   0   0
17                 422     2.19  0  0  0  0  1  0  0  0  0   0   0
18                 390     1.87  0  0  0  0  0  1  0  0  0   0   0
19                 370     1.60  0  0  0  0  0  0  1  0  0   0   0
20                 367     1.63  0  0  0  0  0  0  0  1  0   0   0
21                 406     1.22  0  0  0  0  0  0  0  0  1   0   0
22                 418     1.21  0  0  0  0  0  0  0  0  0   1   0
23                 346     1.49  0  0  0  0  0  0  0  0  0   0   1
24                 350     1.64  0  0  0  0  0  0  0  0  0   0   0
25                 330     1.66  1  0  0  0  0  0  0  0  0   0   0
26                 318     1.77  0  1  0  0  0  0  0  0  0   0   0
27                 382     1.82  0  0  1  0  0  0  0  0  0   0   0
28                 337     1.78  0  0  0  1  0  0  0  0  0   0   0
29                 372     1.28  0  0  0  0  1  0  0  0  0   0   0
30                 422     1.29  0  0  0  0  0  1  0  0  0   0   0
31                 428     1.37  0  0  0  0  0  0  1  0  0   0   0
32                 426     1.12  0  0  0  0  0  0  0  1  0   0   0
33                 396     1.51  0  0  0  0  0  0  0  0  1   0   0
34                 458     2.24  0  0  0  0  0  0  0  0  0   1   0
35                 315     2.94  0  0  0  0  0  0  0  0  0   0   1
36                 337     3.09  0  0  0  0  0  0  0  0  0   0   0
37                 386     3.46  1  0  0  0  0  0  0  0  0   0   0
38                 352     3.64  0  1  0  0  0  0  0  0  0   0   0
39                 383     4.39  0  0  1  0  0  0  0  0  0   0   0
40                 439     4.15  0  0  0  1  0  0  0  0  0   0   0
41                 397     5.21  0  0  0  0  1  0  0  0  0   0   0
42                 453     5.80  0  0  0  0  0  1  0  0  0   0   0
43                 363     5.91  0  0  0  0  0  0  1  0  0   0   0
44                 365     5.39  0  0  0  0  0  0  0  1  0   0   0
45                 474     5.46  0  0  0  0  0  0  0  0  1   0   0
46                 373     4.72  0  0  0  0  0  0  0  0  0   1   0
47                 403     3.14  0  0  0  0  0  0  0  0  0   0   1
48                 384     2.63  0  0  0  0  0  0  0  0  0   0   0
49                 364     2.32  1  0  0  0  0  0  0  0  0   0   0
50                 361     1.93  0  1  0  0  0  0  0  0  0   0   0
51                 419     0.62  0  0  1  0  0  0  0  0  0   0   0
52                 352     0.60  0  0  0  1  0  0  0  0  0   0   0
53                 363    -0.37  0  0  0  0  1  0  0  0  0   0   0
54                 410    -1.10  0  0  0  0  0  1  0  0  0   0   0
55                 361    -1.68  0  0  0  0  0  0  1  0  0   0   0
56                 383    -0.78  0  0  0  0  0  0  0  1  0   0   0
57                 342    -1.19  0  0  0  0  0  0  0  0  1   0   0
58                 369    -0.79  0  0  0  0  0  0  0  0  0   1   0
59                 361    -0.12  0  0  0  0  0  0  0  0  0   0   1
60                 317     0.26  0  0  0  0  0  0  0  0  0   0   0
61                 386     0.62  1  0  0  0  0  0  0  0  0   0   0
62                 318     0.70  0  1  0  0  0  0  0  0  0   0   0
63                 407     1.66  0  0  1  0  0  0  0  0  0   0   0
64                 393     1.80  0  0  0  1  0  0  0  0  0   0   0
65                 404     2.27  0  0  0  0  1  0  0  0  0   0   0
66                 498     2.46  0  0  0  0  0  1  0  0  0   0   0
67                 438     2.57  0  0  0  0  0  0  1  0  0   0   0
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)     Inflatie           M1           M2           M3           M4  
    344.888        3.764       -3.845      -18.037       47.466       22.092  
         M5           M6           M7           M8           M9          M10  
     35.400       72.171       24.180       20.230       41.663       49.697  
        M11  
     -2.031  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-77.887 -22.277  -2.899  19.739  71.682 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  344.888     17.130  20.133  < 2e-16 ***
Inflatie       3.764      2.747   1.370  0.17622    
M1            -3.845     21.838  -0.176  0.86088    
M2           -18.037     21.838  -0.826  0.41246    
M3            47.466     21.839   2.173  0.03415 *  
M4            22.092     21.838   1.012  0.31623    
M5            35.400     21.838   1.621  0.11084    
M6            72.171     21.839   3.305  0.00169 ** 
M7            24.180     21.838   1.107  0.27309    
M8            20.230     22.808   0.887  0.37903    
M9            41.663     22.809   1.827  0.07329 .  
M10           49.697     22.811   2.179  0.03374 *  
M11           -2.031     22.810  -0.089  0.92937    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 36.06 on 54 degrees of freedom
Multiple R-squared: 0.401,	Adjusted R-squared: 0.2679 
F-statistic: 3.013 on 12 and 54 DF,  p-value: 0.002719 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
            [,1]       [,2]       [,3]
 [1,] 0.59908612 0.80182776 0.40091388
 [2,] 0.59835340 0.80329319 0.40164660
 [3,] 0.48769606 0.97539212 0.51230394
 [4,] 0.50179435 0.99641129 0.49820565
 [5,] 0.39246273 0.78492547 0.60753727
 [6,] 0.28693229 0.57386458 0.71306771
 [7,] 0.20002660 0.40005320 0.79997340
 [8,] 0.13115474 0.26230948 0.86884526
 [9,] 0.14016942 0.28033884 0.85983058
[10,] 0.10196619 0.20393238 0.89803381
[11,] 0.07853746 0.15707492 0.92146254
[12,] 0.06814857 0.13629715 0.93185143
[13,] 0.07697076 0.15394151 0.92302924
[14,] 0.07090103 0.14180205 0.92909897
[15,] 0.05481382 0.10962763 0.94518618
[16,] 0.13518330 0.27036659 0.86481670
[17,] 0.18843870 0.37687740 0.81156130
[18,] 0.13411018 0.26822036 0.86588982
[19,] 0.26185715 0.52371430 0.73814285
[20,] 0.30988541 0.61977082 0.69011459
[21,] 0.24933514 0.49867027 0.75066486
[22,] 0.37317267 0.74634535 0.62682733
[23,] 0.33336501 0.66673002 0.66663499
[24,] 0.32113725 0.64227449 0.67886275
[25,] 0.49277124 0.98554247 0.50722876
[26,] 0.40980920 0.81961840 0.59019080
[27,] 0.41181270 0.82362541 0.58818730
[28,] 0.59648401 0.80703198 0.40351599
[29,] 0.82143132 0.35713736 0.17856868
[30,] 0.85570457 0.28859086 0.14429543
[31,] 0.96861490 0.06277021 0.03138510
[32,] 0.95560274 0.08879453 0.04439726
[33,] 0.92978795 0.14042410 0.07021205
[34,] 0.97595562 0.04808876 0.02404438
[35,] 0.95283216 0.09433568 0.04716784
[36,] 0.96217508 0.07564984 0.03782492
> postscript(file="/var/www/html/rcomp/tmp/15l8r1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/25l8r1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/35l8r1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4gdpc1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5gdpc1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 67 
Frequency = 1 
           1            2            3            4            5            6 
-49.54934977 -34.52445892  -3.91006281  14.63133711 -16.73587822 -48.86155122 
           7            8            9           10           11           12 
-77.88684831 -52.82432164 -45.44590040 -11.88204805 -25.53047839  20.23389227 
          13           14           15           16           17           18 
-21.94206533  23.19071934  14.28438981 -36.35738600  33.46863253 -34.09745511 
          19           20           21           22           23           24 
 -5.09014032  -4.25345941  14.85644603  18.86071304  -2.46525460  -1.06098760 
          25           26           27           28           29           30 
-17.29089211 -15.51318204 -17.20494268 -36.67984871 -13.10604001   0.08572063 
          31           32           33           34           35           36 
 53.77560179  56.66622960   3.76485817  54.98369405 -38.92319395 -19.51892695 
          37           38           39           40           41           42 
 31.93373491  11.44795825 -25.87866966  56.39924353  -2.89893770  14.10964721 
          43           44           45           46           47           48 
-28.31339452 -20.40646075  66.89667856 -39.35126428  48.32398683  29.21255726 
          49           50           51           52           53           54 
 14.22480446  26.88456258  24.31197264 -17.23821531 -15.89528145  -2.91808969 
          55           56           57           58           59           60 
 -1.74390510  20.81801220 -40.07208236 -22.61109476  18.59494012 -28.86653498 
          61           62           63           64           65           66 
 42.62376784 -11.48559921   8.39731270  19.24486937  15.16750484  71.68172819 
          67 
 59.25868646 
> postscript(file="/var/www/html/rcomp/tmp/6gdpc1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 67 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0        -49.54934977           NA
 1        -34.52445892 -49.54934977
 2         -3.91006281 -34.52445892
 3         14.63133711  -3.91006281
 4        -16.73587822  14.63133711
 5        -48.86155122 -16.73587822
 6        -77.88684831 -48.86155122
 7        -52.82432164 -77.88684831
 8        -45.44590040 -52.82432164
 9        -11.88204805 -45.44590040
10        -25.53047839 -11.88204805
11         20.23389227 -25.53047839
12        -21.94206533  20.23389227
13         23.19071934 -21.94206533
14         14.28438981  23.19071934
15        -36.35738600  14.28438981
16         33.46863253 -36.35738600
17        -34.09745511  33.46863253
18         -5.09014032 -34.09745511
19         -4.25345941  -5.09014032
20         14.85644603  -4.25345941
21         18.86071304  14.85644603
22         -2.46525460  18.86071304
23         -1.06098760  -2.46525460
24        -17.29089211  -1.06098760
25        -15.51318204 -17.29089211
26        -17.20494268 -15.51318204
27        -36.67984871 -17.20494268
28        -13.10604001 -36.67984871
29          0.08572063 -13.10604001
30         53.77560179   0.08572063
31         56.66622960  53.77560179
32          3.76485817  56.66622960
33         54.98369405   3.76485817
34        -38.92319395  54.98369405
35        -19.51892695 -38.92319395
36         31.93373491 -19.51892695
37         11.44795825  31.93373491
38        -25.87866966  11.44795825
39         56.39924353 -25.87866966
40         -2.89893770  56.39924353
41         14.10964721  -2.89893770
42        -28.31339452  14.10964721
43        -20.40646075 -28.31339452
44         66.89667856 -20.40646075
45        -39.35126428  66.89667856
46         48.32398683 -39.35126428
47         29.21255726  48.32398683
48         14.22480446  29.21255726
49         26.88456258  14.22480446
50         24.31197264  26.88456258
51        -17.23821531  24.31197264
52        -15.89528145 -17.23821531
53         -2.91808969 -15.89528145
54         -1.74390510  -2.91808969
55         20.81801220  -1.74390510
56        -40.07208236  20.81801220
57        -22.61109476 -40.07208236
58         18.59494012 -22.61109476
59        -28.86653498  18.59494012
60         42.62376784 -28.86653498
61        -11.48559921  42.62376784
62          8.39731270 -11.48559921
63         19.24486937   8.39731270
64         15.16750484  19.24486937
65         71.68172819  15.16750484
66         59.25868646  71.68172819
67                  NA  59.25868646
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]        -34.52445892 -49.54934977
 [2,]         -3.91006281 -34.52445892
 [3,]         14.63133711  -3.91006281
 [4,]        -16.73587822  14.63133711
 [5,]        -48.86155122 -16.73587822
 [6,]        -77.88684831 -48.86155122
 [7,]        -52.82432164 -77.88684831
 [8,]        -45.44590040 -52.82432164
 [9,]        -11.88204805 -45.44590040
[10,]        -25.53047839 -11.88204805
[11,]         20.23389227 -25.53047839
[12,]        -21.94206533  20.23389227
[13,]         23.19071934 -21.94206533
[14,]         14.28438981  23.19071934
[15,]        -36.35738600  14.28438981
[16,]         33.46863253 -36.35738600
[17,]        -34.09745511  33.46863253
[18,]         -5.09014032 -34.09745511
[19,]         -4.25345941  -5.09014032
[20,]         14.85644603  -4.25345941
[21,]         18.86071304  14.85644603
[22,]         -2.46525460  18.86071304
[23,]         -1.06098760  -2.46525460
[24,]        -17.29089211  -1.06098760
[25,]        -15.51318204 -17.29089211
[26,]        -17.20494268 -15.51318204
[27,]        -36.67984871 -17.20494268
[28,]        -13.10604001 -36.67984871
[29,]          0.08572063 -13.10604001
[30,]         53.77560179   0.08572063
[31,]         56.66622960  53.77560179
[32,]          3.76485817  56.66622960
[33,]         54.98369405   3.76485817
[34,]        -38.92319395  54.98369405
[35,]        -19.51892695 -38.92319395
[36,]         31.93373491 -19.51892695
[37,]         11.44795825  31.93373491
[38,]        -25.87866966  11.44795825
[39,]         56.39924353 -25.87866966
[40,]         -2.89893770  56.39924353
[41,]         14.10964721  -2.89893770
[42,]        -28.31339452  14.10964721
[43,]        -20.40646075 -28.31339452
[44,]         66.89667856 -20.40646075
[45,]        -39.35126428  66.89667856
[46,]         48.32398683 -39.35126428
[47,]         29.21255726  48.32398683
[48,]         14.22480446  29.21255726
[49,]         26.88456258  14.22480446
[50,]         24.31197264  26.88456258
[51,]        -17.23821531  24.31197264
[52,]        -15.89528145 -17.23821531
[53,]         -2.91808969 -15.89528145
[54,]         -1.74390510  -2.91808969
[55,]         20.81801220  -1.74390510
[56,]        -40.07208236  20.81801220
[57,]        -22.61109476 -40.07208236
[58,]         18.59494012 -22.61109476
[59,]        -28.86653498  18.59494012
[60,]         42.62376784 -28.86653498
[61,]        -11.48559921  42.62376784
[62,]          8.39731270 -11.48559921
[63,]         19.24486937   8.39731270
[64,]         15.16750484  19.24486937
[65,]         71.68172819  15.16750484
[66,]         59.25868646  71.68172819
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1         -34.52445892 -49.54934977
2          -3.91006281 -34.52445892
3          14.63133711  -3.91006281
4         -16.73587822  14.63133711
5         -48.86155122 -16.73587822
6         -77.88684831 -48.86155122
7         -52.82432164 -77.88684831
8         -45.44590040 -52.82432164
9         -11.88204805 -45.44590040
10        -25.53047839 -11.88204805
11         20.23389227 -25.53047839
12        -21.94206533  20.23389227
13         23.19071934 -21.94206533
14         14.28438981  23.19071934
15        -36.35738600  14.28438981
16         33.46863253 -36.35738600
17        -34.09745511  33.46863253
18         -5.09014032 -34.09745511
19         -4.25345941  -5.09014032
20         14.85644603  -4.25345941
21         18.86071304  14.85644603
22         -2.46525460  18.86071304
23         -1.06098760  -2.46525460
24        -17.29089211  -1.06098760
25        -15.51318204 -17.29089211
26        -17.20494268 -15.51318204
27        -36.67984871 -17.20494268
28        -13.10604001 -36.67984871
29          0.08572063 -13.10604001
30         53.77560179   0.08572063
31         56.66622960  53.77560179
32          3.76485817  56.66622960
33         54.98369405   3.76485817
34        -38.92319395  54.98369405
35        -19.51892695 -38.92319395
36         31.93373491 -19.51892695
37         11.44795825  31.93373491
38        -25.87866966  11.44795825
39         56.39924353 -25.87866966
40         -2.89893770  56.39924353
41         14.10964721  -2.89893770
42        -28.31339452  14.10964721
43        -20.40646075 -28.31339452
44         66.89667856 -20.40646075
45        -39.35126428  66.89667856
46         48.32398683 -39.35126428
47         29.21255726  48.32398683
48         14.22480446  29.21255726
49         26.88456258  14.22480446
50         24.31197264  26.88456258
51        -17.23821531  24.31197264
52        -15.89528145 -17.23821531
53         -2.91808969 -15.89528145
54         -1.74390510  -2.91808969
55         20.81801220  -1.74390510
56        -40.07208236  20.81801220
57        -22.61109476 -40.07208236
58         18.59494012 -22.61109476
59        -28.86653498  18.59494012
60         42.62376784 -28.86653498
61        -11.48559921  42.62376784
62          8.39731270 -11.48559921
63         19.24486937   8.39731270
64         15.16750484  19.24486937
65         71.68172819  15.16750484
66         59.25868646  71.68172819
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7rm6f1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8jv6i1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9jv6i1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10jv6i1292502832.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11ne4o1292502832.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/128e3u1292502832.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13fxi61292502832.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14qph91292502832.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15tpfe1292502832.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16phvn1292502832.tab") 
+ }
> 
> try(system("convert tmp/15l8r1292502832.ps tmp/15l8r1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/25l8r1292502832.ps tmp/25l8r1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/35l8r1292502832.ps tmp/35l8r1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/4gdpc1292502832.ps tmp/4gdpc1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/5gdpc1292502832.ps tmp/5gdpc1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/6gdpc1292502832.ps tmp/6gdpc1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/7rm6f1292502832.ps tmp/7rm6f1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/8jv6i1292502832.ps tmp/8jv6i1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/9jv6i1292502832.ps tmp/9jv6i1292502832.png",intern=TRUE))
character(0)
> try(system("convert tmp/10jv6i1292502832.ps tmp/10jv6i1292502832.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.551   1.664   6.161