R version 2.12.0 (2010-10-15) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i486-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(5.81,5.76,5.99,6.12,6.03,6.25,5.80,5.67,5.89,5.91,5.86,6.07,6.27,6.68,6.77,6.71,6.62,6.50,5.89,6.05,6.43,6.47,6.62,6.77,6.70,6.95,6.73,7.07,7.28,7.32,6.76,6.93,6.99,7.16,7.28,7.08,7.34,7.87,6.28,6.30,6.36,6.28,5.89,6.04,5.96,6.10,6.26,6.02,6.25,6.41,6.22,6.57,6.18,6.26,6.10,6.02,6.06,6.35,6.21,6.48,6.74,6.53,6.80,6.75,6.56,6.66,6.18,6.40,6.43,6.54,6.44,6.64,6.82,6.97,7.00,6.91,6.74,6.98,6.37,6.56,6.63,6.87,6.68,6.75,6.84,7.15,7.09,6.97,7.15) > par10 = 'FALSE' > par9 = '1' > par8 = '0' > par7 = '1' > par6 = '2' > par5 = '12' > par4 = '1' > par3 = '1' > par2 = '1' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: Wessa P., (2009), ARIMA Forecasting (v1.0.5) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_arimaforecasting.wasp/ > #Source of accompanying publication: > #Technical description: > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ma1 sma1 -0.8608 -0.4246 0.6130 -0.9999 s.e. 0.2004 0.1141 0.2043 0.2439 sigma^2 estimated as 0.05382: log likelihood = -8.57, aic = 27.14 > (forecast <- predict(arima.out,par1)) $pred Time Series: Start = 78 End = 89 Frequency = 1 [1] 6.898558 6.394360 6.476999 6.611433 6.722069 6.738187 6.827806 6.991093 [9] 7.171945 6.973384 7.064912 6.970902 $se Time Series: Start = 78 End = 89 Frequency = 1 [1] 0.2505909 0.3135247 0.3415528 0.3996452 0.4334917 0.4660921 0.5016190 [8] 0.5300815 0.5584414 0.5856676 0.6108207 0.6356005 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 78 End = 89 Frequency = 1 [1] 6.407400 5.779852 5.807555 5.828129 5.872425 5.824647 5.844632 5.952133 [9] 6.077400 5.825476 5.867704 5.725125 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 78 End = 89 Frequency = 1 [1] 7.389716 7.008869 7.146442 7.394738 7.571713 7.651728 7.810979 8.030053 [9] 8.266490 8.121293 8.262121 8.216679 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 5.810000 5.760000 5.990000 6.120000 6.030000 6.250000 5.800000 5.670000 [9] 5.890000 5.910000 5.860000 6.070000 6.270000 6.680000 6.770000 6.710000 [17] 6.620000 6.500000 5.890000 6.050000 6.430000 6.470000 6.620000 6.770000 [25] 6.700000 6.950000 6.730000 7.070000 7.280000 7.320000 6.760000 6.930000 [33] 6.990000 7.160000 7.280000 7.080000 7.340000 7.870000 6.280000 6.300000 [41] 6.360000 6.280000 5.890000 6.040000 5.960000 6.100000 6.260000 6.020000 [49] 6.250000 6.410000 6.220000 6.570000 6.180000 6.260000 6.100000 6.020000 [57] 6.060000 6.350000 6.210000 6.480000 6.740000 6.530000 6.800000 6.750000 [65] 6.560000 6.660000 6.180000 6.400000 6.430000 6.540000 6.440000 6.640000 [73] 6.820000 6.970000 7.000000 6.910000 6.740000 6.898558 6.394360 6.476999 [81] 6.611433 6.722069 6.738187 6.827806 6.991093 7.171945 6.973384 7.064912 [89] 6.970902 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 78 End = 89 Frequency = 1 [1] 0.03632511 0.04903145 0.05273319 0.06044758 0.06448783 0.06917173 [7] 0.07346708 0.07582241 0.07786471 0.08398614 0.08645836 0.09117909 > postscript(file="/var/www/rcomp/tmp/1her91291740163.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.mape1 <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.mse1 <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape[1] = abs(perf.pe[1]) > perf.mse[1] = abs(perf.se[1]) > for (i in 2:fx) { + perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i]) + perf.mape1[i] = perf.mape[i] / i + perf.mse[i] = perf.mse[i-1] + perf.se[i] + perf.mse1[i] = perf.mse[i] / i + } > perf.rmse = sqrt(perf.mse1) > postscript(file="/var/www/rcomp/tmp/2d67i1291740163.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:par1] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/3kpmb1291740163.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape1[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse1[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/rcomp/tmp/4o83z1291740163.tab") > > try(system("convert tmp/1her91291740163.ps tmp/1her91291740163.png",intern=TRUE)) character(0) > try(system("convert tmp/2d67i1291740163.ps tmp/2d67i1291740163.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.860 0.410 1.267