R version 2.8.0 (2008-10-20)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
  Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(9911,8915,9452,9112,8472,8230,8384,8625,8221,8649,8625,10443,10357,8586,8892,8329,8101,7922,8120,7838,7735,8406,8209,9451,10041,9411,10405,8467,8464,8102,7627,7513,7510,8291,8064,9383,9706,8579,9474,8318,8213,8059,9111,7708,7680,8014,8007,8718,9486,9113,9025,8476,7952,7759,7835,7600,7651,8319,8812,8630),dim=c(1,60),dimnames=list(c(''),1:60))
>  y <- array(NA,dim=c(1,60),dimnames=list(c(''),1:60))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
         M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1   9911  1  0  0  0  0  0  0  0  0   0   0  1
2   8915  0  1  0  0  0  0  0  0  0   0   0  2
3   9452  0  0  1  0  0  0  0  0  0   0   0  3
4   9112  0  0  0  1  0  0  0  0  0   0   0  4
5   8472  0  0  0  0  1  0  0  0  0   0   0  5
6   8230  0  0  0  0  0  1  0  0  0   0   0  6
7   8384  0  0  0  0  0  0  1  0  0   0   0  7
8   8625  0  0  0  0  0  0  0  1  0   0   0  8
9   8221  0  0  0  0  0  0  0  0  1   0   0  9
10  8649  0  0  0  0  0  0  0  0  0   1   0 10
11  8625  0  0  0  0  0  0  0  0  0   0   1 11
12 10443  0  0  0  0  0  0  0  0  0   0   0 12
13 10357  1  0  0  0  0  0  0  0  0   0   0 13
14  8586  0  1  0  0  0  0  0  0  0   0   0 14
15  8892  0  0  1  0  0  0  0  0  0   0   0 15
16  8329  0  0  0  1  0  0  0  0  0   0   0 16
17  8101  0  0  0  0  1  0  0  0  0   0   0 17
18  7922  0  0  0  0  0  1  0  0  0   0   0 18
19  8120  0  0  0  0  0  0  1  0  0   0   0 19
20  7838  0  0  0  0  0  0  0  1  0   0   0 20
21  7735  0  0  0  0  0  0  0  0  1   0   0 21
22  8406  0  0  0  0  0  0  0  0  0   1   0 22
23  8209  0  0  0  0  0  0  0  0  0   0   1 23
24  9451  0  0  0  0  0  0  0  0  0   0   0 24
25 10041  1  0  0  0  0  0  0  0  0   0   0 25
26  9411  0  1  0  0  0  0  0  0  0   0   0 26
27 10405  0  0  1  0  0  0  0  0  0   0   0 27
28  8467  0  0  0  1  0  0  0  0  0   0   0 28
29  8464  0  0  0  0  1  0  0  0  0   0   0 29
30  8102  0  0  0  0  0  1  0  0  0   0   0 30
31  7627  0  0  0  0  0  0  1  0  0   0   0 31
32  7513  0  0  0  0  0  0  0  1  0   0   0 32
33  7510  0  0  0  0  0  0  0  0  1   0   0 33
34  8291  0  0  0  0  0  0  0  0  0   1   0 34
35  8064  0  0  0  0  0  0  0  0  0   0   1 35
36  9383  0  0  0  0  0  0  0  0  0   0   0 36
37  9706  1  0  0  0  0  0  0  0  0   0   0 37
38  8579  0  1  0  0  0  0  0  0  0   0   0 38
39  9474  0  0  1  0  0  0  0  0  0   0   0 39
40  8318  0  0  0  1  0  0  0  0  0   0   0 40
41  8213  0  0  0  0  1  0  0  0  0   0   0 41
42  8059  0  0  0  0  0  1  0  0  0   0   0 42
43  9111  0  0  0  0  0  0  1  0  0   0   0 43
44  7708  0  0  0  0  0  0  0  1  0   0   0 44
45  7680  0  0  0  0  0  0  0  0  1   0   0 45
46  8014  0  0  0  0  0  0  0  0  0   1   0 46
47  8007  0  0  0  0  0  0  0  0  0   0   1 47
48  8718  0  0  0  0  0  0  0  0  0   0   0 48
49  9486  1  0  0  0  0  0  0  0  0   0   0 49
50  9113  0  1  0  0  0  0  0  0  0   0   0 50
51  9025  0  0  1  0  0  0  0  0  0   0   0 51
52  8476  0  0  0  1  0  0  0  0  0   0   0 52
53  7952  0  0  0  0  1  0  0  0  0   0   0 53
54  7759  0  0  0  0  0  1  0  0  0   0   0 54
55  7835  0  0  0  0  0  0  1  0  0   0   0 55
56  7600  0  0  0  0  0  0  0  1  0   0   0 56
57  7651  0  0  0  0  0  0  0  0  1   0   0 57
58  8319  0  0  0  0  0  0  0  0  0   1   0 58
59  8812  0  0  0  0  0  0  0  0  0   0   1 59
60  8630  0  0  0  0  0  0  0  0  0   0   0 60
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)           M1           M2           M3           M4           M5  
   9653.025      474.970     -495.318       42.594     -857.494    -1148.383  
         M6           M7           M8           M9          M10          M11  
  -1365.271    -1155.159    -1504.647    -1592.935    -1007.424     -990.712  
          t  
     -9.112  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
    Min      1Q  Median      3Q     Max 
-666.94 -213.41  -42.13  135.51 1004.94 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  9653.025    201.514  47.903  < 2e-16 ***
M1            474.970    245.153   1.937 0.058713 .  
M2           -495.318    244.786  -2.023 0.048732 *  
M3             42.594    244.455   0.174 0.862425    
M4           -857.494    244.157  -3.512 0.000994 ***
M5          -1148.383    243.895  -4.709 2.24e-05 ***
M6          -1365.271    243.667  -5.603 1.07e-06 ***
M7          -1155.159    243.474  -4.744 1.98e-05 ***
M8          -1504.647    243.316  -6.184 1.42e-07 ***
M9          -1592.935    243.193  -6.550 3.94e-08 ***
M10         -1007.424    243.105  -4.144 0.000141 ***
M11          -990.712    243.052  -4.076 0.000175 ***
t              -9.112      2.923  -3.117 0.003114 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 384.3 on 47 degrees of freedom
Multiple R-squared: 0.7937,	Adjusted R-squared: 0.741 
F-statistic: 15.06 on 12 and 47 DF,  p-value: 2.809e-12 
> postscript(file="/var/www/html/freestat/rcomp/tmp/1daue1291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/2o2uh1291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/3o2uh1291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/4o2uh1291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/5hbb21291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 60 
Frequency = 1 
          1           2           3           4           5           6 
-207.883333 -224.483333 -216.283333  352.916667   12.916667   -3.083333 
          7           8           9          10          11          12 
 -50.083333  549.516667  242.916667   94.516667   62.916667  899.316667 
         13          14          15          16          17          18 
 347.458333 -444.141667 -666.941667 -320.741667 -248.741667 -201.741667 
         19          20          21          22          23          24 
-204.741667 -128.141667 -133.741667  -39.141667 -243.741667   16.658333 
         25          26          27          28          29          30 
 140.800000  490.200000  955.400000  -73.400000  223.600000   87.600000 
         31          32          33          34          35          36 
-588.400000 -343.800000 -249.400000  -44.800000 -279.400000   58.000000 
         37          38          39          40          41          42 
 -84.858333 -232.458333  133.741667 -113.058333   81.941667  153.941667 
         43          44          45          46          47          48 
1004.941667  -39.458333   29.941667 -212.458333 -227.058333 -497.658333 
         49          50          51          52          53          54 
-195.516667  410.883333 -205.916667  154.283333  -69.716667  -36.716667 
         55          56          57          58          59          60 
-161.716667  -38.116667  110.283333  201.883333  687.283333 -476.316667 
> postscript(file="/var/www/html/freestat/rcomp/tmp/6hbb21291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 60 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0         -207.883333          NA
 1         -224.483333 -207.883333
 2         -216.283333 -224.483333
 3          352.916667 -216.283333
 4           12.916667  352.916667
 5           -3.083333   12.916667
 6          -50.083333   -3.083333
 7          549.516667  -50.083333
 8          242.916667  549.516667
 9           94.516667  242.916667
10           62.916667   94.516667
11          899.316667   62.916667
12          347.458333  899.316667
13         -444.141667  347.458333
14         -666.941667 -444.141667
15         -320.741667 -666.941667
16         -248.741667 -320.741667
17         -201.741667 -248.741667
18         -204.741667 -201.741667
19         -128.141667 -204.741667
20         -133.741667 -128.141667
21          -39.141667 -133.741667
22         -243.741667  -39.141667
23           16.658333 -243.741667
24          140.800000   16.658333
25          490.200000  140.800000
26          955.400000  490.200000
27          -73.400000  955.400000
28          223.600000  -73.400000
29           87.600000  223.600000
30         -588.400000   87.600000
31         -343.800000 -588.400000
32         -249.400000 -343.800000
33          -44.800000 -249.400000
34         -279.400000  -44.800000
35           58.000000 -279.400000
36          -84.858333   58.000000
37         -232.458333  -84.858333
38          133.741667 -232.458333
39         -113.058333  133.741667
40           81.941667 -113.058333
41          153.941667   81.941667
42         1004.941667  153.941667
43          -39.458333 1004.941667
44           29.941667  -39.458333
45         -212.458333   29.941667
46         -227.058333 -212.458333
47         -497.658333 -227.058333
48         -195.516667 -497.658333
49          410.883333 -195.516667
50         -205.916667  410.883333
51          154.283333 -205.916667
52          -69.716667  154.283333
53          -36.716667  -69.716667
54         -161.716667  -36.716667
55          -38.116667 -161.716667
56          110.283333  -38.116667
57          201.883333  110.283333
58          687.283333  201.883333
59         -476.316667  687.283333
60                  NA -476.316667
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]         -224.483333 -207.883333
 [2,]         -216.283333 -224.483333
 [3,]          352.916667 -216.283333
 [4,]           12.916667  352.916667
 [5,]           -3.083333   12.916667
 [6,]          -50.083333   -3.083333
 [7,]          549.516667  -50.083333
 [8,]          242.916667  549.516667
 [9,]           94.516667  242.916667
[10,]           62.916667   94.516667
[11,]          899.316667   62.916667
[12,]          347.458333  899.316667
[13,]         -444.141667  347.458333
[14,]         -666.941667 -444.141667
[15,]         -320.741667 -666.941667
[16,]         -248.741667 -320.741667
[17,]         -201.741667 -248.741667
[18,]         -204.741667 -201.741667
[19,]         -128.141667 -204.741667
[20,]         -133.741667 -128.141667
[21,]          -39.141667 -133.741667
[22,]         -243.741667  -39.141667
[23,]           16.658333 -243.741667
[24,]          140.800000   16.658333
[25,]          490.200000  140.800000
[26,]          955.400000  490.200000
[27,]          -73.400000  955.400000
[28,]          223.600000  -73.400000
[29,]           87.600000  223.600000
[30,]         -588.400000   87.600000
[31,]         -343.800000 -588.400000
[32,]         -249.400000 -343.800000
[33,]          -44.800000 -249.400000
[34,]         -279.400000  -44.800000
[35,]           58.000000 -279.400000
[36,]          -84.858333   58.000000
[37,]         -232.458333  -84.858333
[38,]          133.741667 -232.458333
[39,]         -113.058333  133.741667
[40,]           81.941667 -113.058333
[41,]          153.941667   81.941667
[42,]         1004.941667  153.941667
[43,]          -39.458333 1004.941667
[44,]           29.941667  -39.458333
[45,]         -212.458333   29.941667
[46,]         -227.058333 -212.458333
[47,]         -497.658333 -227.058333
[48,]         -195.516667 -497.658333
[49,]          410.883333 -195.516667
[50,]         -205.916667  410.883333
[51,]          154.283333 -205.916667
[52,]          -69.716667  154.283333
[53,]          -36.716667  -69.716667
[54,]         -161.716667  -36.716667
[55,]          -38.116667 -161.716667
[56,]          110.283333  -38.116667
[57,]          201.883333  110.283333
[58,]          687.283333  201.883333
[59,]         -476.316667  687.283333
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1          -224.483333 -207.883333
2          -216.283333 -224.483333
3           352.916667 -216.283333
4            12.916667  352.916667
5            -3.083333   12.916667
6           -50.083333   -3.083333
7           549.516667  -50.083333
8           242.916667  549.516667
9            94.516667  242.916667
10           62.916667   94.516667
11          899.316667   62.916667
12          347.458333  899.316667
13         -444.141667  347.458333
14         -666.941667 -444.141667
15         -320.741667 -666.941667
16         -248.741667 -320.741667
17         -201.741667 -248.741667
18         -204.741667 -201.741667
19         -128.141667 -204.741667
20         -133.741667 -128.141667
21          -39.141667 -133.741667
22         -243.741667  -39.141667
23           16.658333 -243.741667
24          140.800000   16.658333
25          490.200000  140.800000
26          955.400000  490.200000
27          -73.400000  955.400000
28          223.600000  -73.400000
29           87.600000  223.600000
30         -588.400000   87.600000
31         -343.800000 -588.400000
32         -249.400000 -343.800000
33          -44.800000 -249.400000
34         -279.400000  -44.800000
35           58.000000 -279.400000
36          -84.858333   58.000000
37         -232.458333  -84.858333
38          133.741667 -232.458333
39         -113.058333  133.741667
40           81.941667 -113.058333
41          153.941667   81.941667
42         1004.941667  153.941667
43          -39.458333 1004.941667
44           29.941667  -39.458333
45         -212.458333   29.941667
46         -227.058333 -212.458333
47         -497.658333 -227.058333
48         -195.516667 -497.658333
49          410.883333 -195.516667
50         -205.916667  410.883333
51          154.283333 -205.916667
52          -69.716667  154.283333
53          -36.716667  -69.716667
54         -161.716667  -36.716667
55          -38.116667 -161.716667
56          110.283333  -38.116667
57          201.883333  110.283333
58          687.283333  201.883333
59         -476.316667  687.283333
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/79ksm1291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/89ksm1291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/freestat/rcomp/tmp/9kbs71291719058.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> 
> #Note: the /var/www/html/freestat/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/freestat/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/106uqd1291719058.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/11y37g1291719058.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/12n44s1291719058.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/freestat/rcomp/tmp/1395lg1291719058.tab") 
> 
> try(system("convert tmp/1daue1291719058.ps tmp/1daue1291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/2o2uh1291719058.ps tmp/2o2uh1291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/3o2uh1291719058.ps tmp/3o2uh1291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/4o2uh1291719058.ps tmp/4o2uh1291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/5hbb21291719058.ps tmp/5hbb21291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/6hbb21291719058.ps tmp/6hbb21291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/79ksm1291719058.ps tmp/79ksm1291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/89ksm1291719058.ps tmp/89ksm1291719058.png",intern=TRUE))
character(0)
> try(system("convert tmp/9kbs71291719058.ps tmp/9kbs71291719058.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  3.035   2.200   3.316