R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(-820.8,0,993.3,0,741.7,0,603.6,0,-145.8,0,-35.1,0,395.1,0,523.1,0,462.3,0,183.4,0,791.5,0,344.8,0,-217.0,0,406.7,0,228.6,0,-580.1,0,-1550.4,0,-1447.5,0,-40.1,0,-1033.5,0,-925.6,0,-347.8,0,-447.7,0,-102.6,0,-2062.2,0,-929.7,1,-720.7,1,-1541.8,1,-1432.3,1,-1216.2,1,-212.8,1,-378.2,1,76.9,1,-101.3,1,220.4,1,495.6,1,-1035.2,1,61.8,1,-734.8,1,-6.9,1,-1061.1,1,-854.6,1,-186.5,1,244.0,1,-992.6,1,-335.2,1,316.8,1,477.6,1,-572.1,1,1115.2,1),dim=c(2,50),dimnames=list(c('Totaal','Dummy'),1:50))
>  y <- array(NA,dim=c(2,50),dimnames=list(c('Totaal','Dummy'),1:50))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
    Totaal Dummy M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1   -820.8     0  1  0  0  0  0  0  0  0  0   0   0  1
2    993.3     0  0  1  0  0  0  0  0  0  0   0   0  2
3    741.7     0  0  0  1  0  0  0  0  0  0   0   0  3
4    603.6     0  0  0  0  1  0  0  0  0  0   0   0  4
5   -145.8     0  0  0  0  0  1  0  0  0  0   0   0  5
6    -35.1     0  0  0  0  0  0  1  0  0  0   0   0  6
7    395.1     0  0  0  0  0  0  0  1  0  0   0   0  7
8    523.1     0  0  0  0  0  0  0  0  1  0   0   0  8
9    462.3     0  0  0  0  0  0  0  0  0  1   0   0  9
10   183.4     0  0  0  0  0  0  0  0  0  0   1   0 10
11   791.5     0  0  0  0  0  0  0  0  0  0   0   1 11
12   344.8     0  0  0  0  0  0  0  0  0  0   0   0 12
13  -217.0     0  1  0  0  0  0  0  0  0  0   0   0 13
14   406.7     0  0  1  0  0  0  0  0  0  0   0   0 14
15   228.6     0  0  0  1  0  0  0  0  0  0   0   0 15
16  -580.1     0  0  0  0  1  0  0  0  0  0   0   0 16
17 -1550.4     0  0  0  0  0  1  0  0  0  0   0   0 17
18 -1447.5     0  0  0  0  0  0  1  0  0  0   0   0 18
19   -40.1     0  0  0  0  0  0  0  1  0  0   0   0 19
20 -1033.5     0  0  0  0  0  0  0  0  1  0   0   0 20
21  -925.6     0  0  0  0  0  0  0  0  0  1   0   0 21
22  -347.8     0  0  0  0  0  0  0  0  0  0   1   0 22
23  -447.7     0  0  0  0  0  0  0  0  0  0   0   1 23
24  -102.6     0  0  0  0  0  0  0  0  0  0   0   0 24
25 -2062.2     0  1  0  0  0  0  0  0  0  0   0   0 25
26  -929.7     1  0  1  0  0  0  0  0  0  0   0   0 26
27  -720.7     1  0  0  1  0  0  0  0  0  0   0   0 27
28 -1541.8     1  0  0  0  1  0  0  0  0  0   0   0 28
29 -1432.3     1  0  0  0  0  1  0  0  0  0   0   0 29
30 -1216.2     1  0  0  0  0  0  1  0  0  0   0   0 30
31  -212.8     1  0  0  0  0  0  0  1  0  0   0   0 31
32  -378.2     1  0  0  0  0  0  0  0  1  0   0   0 32
33    76.9     1  0  0  0  0  0  0  0  0  1   0   0 33
34  -101.3     1  0  0  0  0  0  0  0  0  0   1   0 34
35   220.4     1  0  0  0  0  0  0  0  0  0   0   1 35
36   495.6     1  0  0  0  0  0  0  0  0  0   0   0 36
37 -1035.2     1  1  0  0  0  0  0  0  0  0   0   0 37
38    61.8     1  0  1  0  0  0  0  0  0  0   0   0 38
39  -734.8     1  0  0  1  0  0  0  0  0  0   0   0 39
40    -6.9     1  0  0  0  1  0  0  0  0  0   0   0 40
41 -1061.1     1  0  0  0  0  1  0  0  0  0   0   0 41
42  -854.6     1  0  0  0  0  0  1  0  0  0   0   0 42
43  -186.5     1  0  0  0  0  0  0  1  0  0   0   0 43
44   244.0     1  0  0  0  0  0  0  0  1  0   0   0 44
45  -992.6     1  0  0  0  0  0  0  0  0  1   0   0 45
46  -335.2     1  0  0  0  0  0  0  0  0  0   1   0 46
47   316.8     1  0  0  0  0  0  0  0  0  0   0   1 47
48   477.6     1  0  0  0  0  0  0  0  0  0   0   0 48
49  -572.1     1  1  0  0  0  0  0  0  0  0   0   0 49
50  1115.2     1  0  1  0  0  0  0  0  0  0   0   0 50
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)        Dummy           M1           M2           M3           M4  
     752.93       197.80     -1316.86       -67.23      -589.54      -831.28  
         M5           M6           M7           M8           M9          M10  
   -1479.11     -1301.80      -406.25      -538.06      -703.40      -490.61  
        M11            t  
    -101.87       -18.27  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-1338.28  -359.94    27.88   388.76  1145.00 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   752.93     397.44   1.894  0.06622 . 
Dummy         197.80     376.51   0.525  0.60256   
M1          -1316.86     419.95  -3.136  0.00341 **
M2            -67.23     427.42  -0.157  0.87589   
M3           -589.54     456.66  -1.291  0.20493   
M4           -831.28     453.40  -1.833  0.07502 . 
M5          -1479.11     450.50  -3.283  0.00229 **
M6          -1301.80     447.98  -2.906  0.00623 **
M7           -406.25     445.84  -0.911  0.36824   
M8           -538.06     444.07  -1.212  0.23354   
M9           -703.40     442.70  -1.589  0.12083   
M10          -490.61     441.71  -1.111  0.27406   
M11          -101.87     441.12  -0.231  0.81868   
t             -18.27      13.21  -1.383  0.17512   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 623.6 on 36 degrees of freedom
Multiple R-squared: 0.4698,	Adjusted R-squared: 0.2783 
F-statistic: 2.454 on 13 and 36 DF,  p-value: 0.01678 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]      [,2]      [,3]
 [1,] 0.8451414 0.3097172 0.1548586
 [2,] 0.8052505 0.3894990 0.1947495
 [3,] 0.7493778 0.5012444 0.2506222
 [4,] 0.7323751 0.5352499 0.2676249
 [5,] 0.6579720 0.6840560 0.3420280
 [6,] 0.5956409 0.8087182 0.4043591
 [7,] 0.4937429 0.9874859 0.5062571
 [8,] 0.4234572 0.8469143 0.5765428
 [9,] 0.3167062 0.6334124 0.6832938
[10,] 0.3499879 0.6999758 0.6500121
[11,] 0.2650270 0.5300540 0.7349730
[12,] 0.4180177 0.8360354 0.5819823
[13,] 0.3923393 0.7846786 0.6076607
[14,] 0.3365938 0.6731876 0.6634062
[15,] 0.2577672 0.5155345 0.7422328
[16,] 0.2353073 0.4706147 0.7646927
[17,] 0.5529791 0.8940419 0.4470209
> postscript(file="/var/www/html/rcomp/tmp/1qhth1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2qhth1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3qhth1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4j8ak1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5j8ak1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 50 
Frequency = 1 
           1            2            3            4            5            6 
 -238.602500   344.137292   633.112917   755.012917   671.712917   623.362917 
           7            8            9           10           11           12 
  176.287917   454.362917   577.162917   103.737917   341.362917  -188.937083 
          13           14           15           16           17           18 
  584.388542   -23.271667   339.203958  -209.496042  -513.696042  -569.846042 
          19           20           21           22           23           24 
  -39.721042  -883.046042  -591.546042  -208.271042  -678.646042  -417.146042 
          25           26           27           28           29           30 
-1041.620417 -1338.279583  -588.703958 -1149.803958  -374.203958  -317.153958 
          31           32           33           34           35           36 
 -191.028958  -206.353958   432.346042    59.621042    10.846042   202.446042 
          37           38           39           40           41           42 
    6.771667  -127.588542  -383.612917   604.287083   216.187083   263.637083 
          43           44           45           46           47           48 
   54.462083   635.037083  -417.962917    44.912083   326.437083   403.637083 
          49           50 
  689.062708  1145.002500 
> postscript(file="/var/www/html/rcomp/tmp/6j8ak1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 50 
Frequency = 1 
   lag(myerror, k = 1)      myerror
 0         -238.602500           NA
 1          344.137292  -238.602500
 2          633.112917   344.137292
 3          755.012917   633.112917
 4          671.712917   755.012917
 5          623.362917   671.712917
 6          176.287917   623.362917
 7          454.362917   176.287917
 8          577.162917   454.362917
 9          103.737917   577.162917
10          341.362917   103.737917
11         -188.937083   341.362917
12          584.388542  -188.937083
13          -23.271667   584.388542
14          339.203958   -23.271667
15         -209.496042   339.203958
16         -513.696042  -209.496042
17         -569.846042  -513.696042
18          -39.721042  -569.846042
19         -883.046042   -39.721042
20         -591.546042  -883.046042
21         -208.271042  -591.546042
22         -678.646042  -208.271042
23         -417.146042  -678.646042
24        -1041.620417  -417.146042
25        -1338.279583 -1041.620417
26         -588.703958 -1338.279583
27        -1149.803958  -588.703958
28         -374.203958 -1149.803958
29         -317.153958  -374.203958
30         -191.028958  -317.153958
31         -206.353958  -191.028958
32          432.346042  -206.353958
33           59.621042   432.346042
34           10.846042    59.621042
35          202.446042    10.846042
36            6.771667   202.446042
37         -127.588542     6.771667
38         -383.612917  -127.588542
39          604.287083  -383.612917
40          216.187083   604.287083
41          263.637083   216.187083
42           54.462083   263.637083
43          635.037083    54.462083
44         -417.962917   635.037083
45           44.912083  -417.962917
46          326.437083    44.912083
47          403.637083   326.437083
48          689.062708   403.637083
49         1145.002500   689.062708
50                  NA  1145.002500
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)      myerror
 [1,]          344.137292  -238.602500
 [2,]          633.112917   344.137292
 [3,]          755.012917   633.112917
 [4,]          671.712917   755.012917
 [5,]          623.362917   671.712917
 [6,]          176.287917   623.362917
 [7,]          454.362917   176.287917
 [8,]          577.162917   454.362917
 [9,]          103.737917   577.162917
[10,]          341.362917   103.737917
[11,]         -188.937083   341.362917
[12,]          584.388542  -188.937083
[13,]          -23.271667   584.388542
[14,]          339.203958   -23.271667
[15,]         -209.496042   339.203958
[16,]         -513.696042  -209.496042
[17,]         -569.846042  -513.696042
[18,]          -39.721042  -569.846042
[19,]         -883.046042   -39.721042
[20,]         -591.546042  -883.046042
[21,]         -208.271042  -591.546042
[22,]         -678.646042  -208.271042
[23,]         -417.146042  -678.646042
[24,]        -1041.620417  -417.146042
[25,]        -1338.279583 -1041.620417
[26,]         -588.703958 -1338.279583
[27,]        -1149.803958  -588.703958
[28,]         -374.203958 -1149.803958
[29,]         -317.153958  -374.203958
[30,]         -191.028958  -317.153958
[31,]         -206.353958  -191.028958
[32,]          432.346042  -206.353958
[33,]           59.621042   432.346042
[34,]           10.846042    59.621042
[35,]          202.446042    10.846042
[36,]            6.771667   202.446042
[37,]         -127.588542     6.771667
[38,]         -383.612917  -127.588542
[39,]          604.287083  -383.612917
[40,]          216.187083   604.287083
[41,]          263.637083   216.187083
[42,]           54.462083   263.637083
[43,]          635.037083    54.462083
[44,]         -417.962917   635.037083
[45,]           44.912083  -417.962917
[46,]          326.437083    44.912083
[47,]          403.637083   326.437083
[48,]          689.062708   403.637083
[49,]         1145.002500   689.062708
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)      myerror
1           344.137292  -238.602500
2           633.112917   344.137292
3           755.012917   633.112917
4           671.712917   755.012917
5           623.362917   671.712917
6           176.287917   623.362917
7           454.362917   176.287917
8           577.162917   454.362917
9           103.737917   577.162917
10          341.362917   103.737917
11         -188.937083   341.362917
12          584.388542  -188.937083
13          -23.271667   584.388542
14          339.203958   -23.271667
15         -209.496042   339.203958
16         -513.696042  -209.496042
17         -569.846042  -513.696042
18          -39.721042  -569.846042
19         -883.046042   -39.721042
20         -591.546042  -883.046042
21         -208.271042  -591.546042
22         -678.646042  -208.271042
23         -417.146042  -678.646042
24        -1041.620417  -417.146042
25        -1338.279583 -1041.620417
26         -588.703958 -1338.279583
27        -1149.803958  -588.703958
28         -374.203958 -1149.803958
29         -317.153958  -374.203958
30         -191.028958  -317.153958
31         -206.353958  -191.028958
32          432.346042  -206.353958
33           59.621042   432.346042
34           10.846042    59.621042
35          202.446042    10.846042
36            6.771667   202.446042
37         -127.588542     6.771667
38         -383.612917  -127.588542
39          604.287083  -383.612917
40          216.187083   604.287083
41          263.637083   216.187083
42           54.462083   263.637083
43          635.037083    54.462083
44         -417.962917   635.037083
45           44.912083  -417.962917
46          326.437083    44.912083
47          403.637083   326.437083
48          689.062708   403.637083
49         1145.002500   689.062708
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7uzr51291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8mrrq1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9mrrq1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10mrrq1291328577.ps",horizontal=F,onefile=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11897w1291328577.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12bso11291328577.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/130blv1291328577.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14ak2g1291328577.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15w20m1291328577.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16scgd1291328577.tab") 
+ }
> 
> try(system("convert tmp/1qhth1291328577.ps tmp/1qhth1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/2qhth1291328577.ps tmp/2qhth1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/3qhth1291328577.ps tmp/3qhth1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/4j8ak1291328577.ps tmp/4j8ak1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/5j8ak1291328577.ps tmp/5j8ak1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/6j8ak1291328577.ps tmp/6j8ak1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/7uzr51291328577.ps tmp/7uzr51291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/8mrrq1291328577.ps tmp/8mrrq1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/9mrrq1291328577.ps tmp/9mrrq1291328577.png",intern=TRUE))
character(0)
> try(system("convert tmp/10mrrq1291328577.ps tmp/10mrrq1291328577.png",intern=TRUE))
character(0)
> 
> 
> proc.time()
   user  system elapsed 
  2.326   1.589  10.639