R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(423.4
+ ,0
+ ,404.1
+ ,0
+ ,500
+ ,0
+ ,472.6
+ ,0
+ ,496.1
+ ,0
+ ,562
+ ,0
+ ,434.8
+ ,0
+ ,538.2
+ ,0
+ ,577.6
+ ,0
+ ,518.1
+ ,0
+ ,625.2
+ ,0
+ ,561.2
+ ,0
+ ,523.3
+ ,0
+ ,536.1
+ ,0
+ ,607.3
+ ,0
+ ,637.3
+ ,0
+ ,606.9
+ ,0
+ ,652.9
+ ,0
+ ,617.2
+ ,0
+ ,670.4
+ ,0
+ ,729.9
+ ,0
+ ,677.2
+ ,0
+ ,710
+ ,0
+ ,844.3
+ ,0
+ ,748.2
+ ,0
+ ,653.9
+ ,0
+ ,742.6
+ ,0
+ ,854.2
+ ,0
+ ,808.4
+ ,0
+ ,1819
+ ,1
+ ,1936.5
+ ,1
+ ,1966.1
+ ,1
+ ,2083.1
+ ,1
+ ,1620.1
+ ,1
+ ,1527.6
+ ,1
+ ,1795
+ ,1
+ ,1685.1
+ ,1
+ ,1851.8
+ ,1
+ ,2164.4
+ ,1
+ ,1981.8
+ ,1
+ ,1726.5
+ ,1
+ ,2144.6
+ ,1
+ ,1758.2
+ ,1
+ ,1672.9
+ ,1
+ ,1837.3
+ ,1
+ ,1596.1
+ ,1
+ ,1446
+ ,1
+ ,1898.4
+ ,1
+ ,1964.1
+ ,1
+ ,1755.9
+ ,1
+ ,2255.3
+ ,1
+ ,1881.2
+ ,1
+ ,2117.9
+ ,1
+ ,1656.5
+ ,1
+ ,1544.1
+ ,1
+ ,2098.9
+ ,1
+ ,2133.3
+ ,1
+ ,1963.5
+ ,1
+ ,1801.2
+ ,1
+ ,2365.4
+ ,1
+ ,1936.5
+ ,1
+ ,1667.6
+ ,1
+ ,1983.5
+ ,1
+ ,2058.6
+ ,1
+ ,2448.3
+ ,1
+ ,1858.1
+ ,1
+ ,1625.4
+ ,1
+ ,2130.6
+ ,1
+ ,2515.7
+ ,1
+ ,2230.2
+ ,1
+ ,2086.9
+ ,1
+ ,2235
+ ,1
+ ,2100.2
+ ,1
+ ,2288.6
+ ,1
+ ,2490
+ ,1
+ ,2573.7
+ ,1
+ ,2543.8
+ ,1
+ ,2004.7
+ ,1
+ ,2390
+ ,1
+ ,2338.4
+ ,1
+ ,2724.5
+ ,1
+ ,2292.5
+ ,1
+ ,2386
+ ,1
+ ,2477.9
+ ,1
+ ,2337
+ ,1
+ ,2605.1
+ ,1
+ ,2560.8
+ ,1
+ ,2839.3
+ ,1
+ ,2407.2
+ ,1
+ ,2085.2
+ ,1
+ ,2735.6
+ ,1
+ ,2798.7
+ ,1
+ ,3053.2
+ ,1
+ ,2405
+ ,1
+ ,2471.9
+ ,1
+ ,2727.3
+ ,1
+ ,2790.7
+ ,1
+ ,2385.4
+ ,1
+ ,3206.6
+ ,1
+ ,2705.6
+ ,1
+ ,3518.4
+ ,1
+ ,1954.9
+ ,1
+ ,2584.3
+ ,1
+ ,2535.8
+ ,1
+ ,2685.9
+ ,1
+ ,2866
+ ,1
+ ,2236.6
+ ,1
+ ,2934.9
+ ,1
+ ,2668.6
+ ,1
+ ,2371.2
+ ,1
+ ,3165.9
+ ,1
+ ,2887.2
+ ,1
+ ,3112.2
+ ,1
+ ,2671.2
+ ,1
+ ,2432.6
+ ,1
+ ,2812.3
+ ,1
+ ,3095.7
+ ,1
+ ,2862.9
+ ,1
+ ,2607.3
+ ,1
+ ,2862.5
+ ,1)
+ ,dim=c(2
+ ,120)
+ ,dimnames=list(c('Y(Export_farma_prod)'
+ ,'X(sprong)')
+ ,1:120))
>  y <- array(NA,dim=c(2,120),dimnames=list(c('Y(Export_farma_prod)','X(sprong)'),1:120))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Do not include Seasonal Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
    Y(Export_farma_prod) X(sprong)
1                  423.4         0
2                  404.1         0
3                  500.0         0
4                  472.6         0
5                  496.1         0
6                  562.0         0
7                  434.8         0
8                  538.2         0
9                  577.6         0
10                 518.1         0
11                 625.2         0
12                 561.2         0
13                 523.3         0
14                 536.1         0
15                 607.3         0
16                 637.3         0
17                 606.9         0
18                 652.9         0
19                 617.2         0
20                 670.4         0
21                 729.9         0
22                 677.2         0
23                 710.0         0
24                 844.3         0
25                 748.2         0
26                 653.9         0
27                 742.6         0
28                 854.2         0
29                 808.4         0
30                1819.0         1
31                1936.5         1
32                1966.1         1
33                2083.1         1
34                1620.1         1
35                1527.6         1
36                1795.0         1
37                1685.1         1
38                1851.8         1
39                2164.4         1
40                1981.8         1
41                1726.5         1
42                2144.6         1
43                1758.2         1
44                1672.9         1
45                1837.3         1
46                1596.1         1
47                1446.0         1
48                1898.4         1
49                1964.1         1
50                1755.9         1
51                2255.3         1
52                1881.2         1
53                2117.9         1
54                1656.5         1
55                1544.1         1
56                2098.9         1
57                2133.3         1
58                1963.5         1
59                1801.2         1
60                2365.4         1
61                1936.5         1
62                1667.6         1
63                1983.5         1
64                2058.6         1
65                2448.3         1
66                1858.1         1
67                1625.4         1
68                2130.6         1
69                2515.7         1
70                2230.2         1
71                2086.9         1
72                2235.0         1
73                2100.2         1
74                2288.6         1
75                2490.0         1
76                2573.7         1
77                2543.8         1
78                2004.7         1
79                2390.0         1
80                2338.4         1
81                2724.5         1
82                2292.5         1
83                2386.0         1
84                2477.9         1
85                2337.0         1
86                2605.1         1
87                2560.8         1
88                2839.3         1
89                2407.2         1
90                2085.2         1
91                2735.6         1
92                2798.7         1
93                3053.2         1
94                2405.0         1
95                2471.9         1
96                2727.3         1
97                2790.7         1
98                2385.4         1
99                3206.6         1
100               2705.6         1
101               3518.4         1
102               1954.9         1
103               2584.3         1
104               2535.8         1
105               2685.9         1
106               2866.0         1
107               2236.6         1
108               2934.9         1
109               2668.6         1
110               2371.2         1
111               3165.9         1
112               2887.2         1
113               3112.2         1
114               2671.2         1
115               2432.6         1
116               2812.3         1
117               3095.7         1
118               2862.9         1
119               2607.3         1
120               2862.5         1
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)  `X(sprong)`  
      611.5       1678.8  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-844.280 -245.155   -2.938  235.278 1228.120 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   611.50      74.32   8.228 2.88e-13 ***
`X(sprong)`  1678.78      85.34  19.671  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 400.2 on 118 degrees of freedom
Multiple R-squared: 0.7663,	Adjusted R-squared: 0.7643 
F-statistic: 386.9 on 1 and 118 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
               [,1]         [,2]       [,3]
  [1,] 2.548261e-03 5.096523e-03 0.99745174
  [2,] 1.170038e-03 2.340075e-03 0.99882996
  [3,] 1.919847e-04 3.839694e-04 0.99980802
  [4,] 4.431028e-05 8.862055e-05 0.99995569
  [5,] 1.813938e-05 3.627876e-05 0.99998186
  [6,] 2.860458e-06 5.720916e-06 0.99999714
  [7,] 2.410336e-06 4.820673e-06 0.99999759
  [8,] 5.154779e-07 1.030956e-06 0.99999948
  [9,] 8.253626e-08 1.650725e-07 0.99999992
 [10,] 1.332699e-08 2.665397e-08 0.99999999
 [11,] 5.089337e-09 1.017867e-08 0.99999999
 [12,] 2.996809e-09 5.993618e-09 1.00000000
 [13,] 8.660370e-10 1.732074e-09 1.00000000
 [14,] 4.973506e-10 9.947013e-10 1.00000000
 [15,] 1.404435e-10 2.808869e-10 1.00000000
 [16,] 8.516494e-11 1.703299e-10 1.00000000
 [17,] 1.365399e-10 2.730798e-10 1.00000000
 [18,] 6.226509e-11 1.245302e-10 1.00000000
 [19,] 4.145553e-11 8.291105e-11 1.00000000
 [20,] 2.819457e-10 5.638913e-10 1.00000000
 [21,] 1.943610e-10 3.887219e-10 1.00000000
 [22,] 5.521354e-11 1.104271e-10 1.00000000
 [23,] 3.141158e-11 6.282316e-11 1.00000000
 [24,] 7.403204e-11 1.480641e-10 1.00000000
 [25,] 6.685609e-11 1.337122e-10 1.00000000
 [26,] 2.038779e-11 4.077557e-11 1.00000000
 [27,] 7.171148e-12 1.434230e-11 1.00000000
 [28,] 2.349513e-12 4.699026e-12 1.00000000
 [29,] 1.305054e-12 2.610107e-12 1.00000000
 [30,] 6.559325e-12 1.311865e-11 1.00000000
 [31,] 4.411426e-11 8.822852e-11 1.00000000
 [32,] 1.727491e-11 3.454982e-11 1.00000000
 [33,] 1.111095e-11 2.222190e-11 1.00000000
 [34,] 4.379753e-12 8.759506e-12 1.00000000
 [35,] 1.716696e-11 3.433393e-11 1.00000000
 [36,] 8.793051e-12 1.758610e-11 1.00000000
 [37,] 5.811583e-12 1.162317e-11 1.00000000
 [38,] 1.001837e-11 2.003673e-11 1.00000000
 [39,] 6.145068e-12 1.229014e-11 1.00000000
 [40,] 6.785917e-12 1.357183e-11 1.00000000
 [41,] 3.229131e-12 6.458262e-12 1.00000000
 [42,] 7.578706e-12 1.515741e-11 1.00000000
 [43,] 1.057571e-10 2.115143e-10 1.00000000
 [44,] 6.373493e-11 1.274699e-10 1.00000000
 [45,] 4.446733e-11 8.893465e-11 1.00000000
 [46,] 3.558052e-11 7.116103e-11 1.00000000
 [47,] 2.133708e-10 4.267417e-10 1.00000000
 [48,] 1.406816e-10 2.813632e-10 1.00000000
 [49,] 1.802962e-10 3.605923e-10 1.00000000
 [50,] 3.602506e-10 7.205012e-10 1.00000000
 [51,] 2.220153e-09 4.440306e-09 1.00000000
 [52,] 2.806089e-09 5.612177e-09 1.00000000
 [53,] 3.903088e-09 7.806177e-09 1.00000000
 [54,] 3.391405e-09 6.782809e-09 1.00000000
 [55,] 4.362968e-09 8.725936e-09 1.00000000
 [56,] 2.810158e-08 5.620316e-08 0.99999997
 [57,] 2.792649e-08 5.585298e-08 0.99999997
 [58,] 1.072170e-07 2.144340e-07 0.99999989
 [59,] 1.230732e-07 2.461463e-07 0.99999988
 [60,] 1.487757e-07 2.975514e-07 0.99999985
 [61,] 1.027696e-06 2.055393e-06 0.99999897
 [62,] 1.858533e-06 3.717066e-06 0.99999814
 [63,] 1.812577e-05 3.625155e-05 0.99998187
 [64,] 2.653034e-05 5.306067e-05 0.99997347
 [65,] 1.324586e-04 2.649173e-04 0.99986754
 [66,] 1.853626e-04 3.707252e-04 0.99981464
 [67,] 2.628789e-04 5.257578e-04 0.99973712
 [68,] 3.692247e-04 7.384494e-04 0.99963078
 [69,] 5.545441e-04 1.109088e-03 0.99944546
 [70,] 8.112520e-04 1.622504e-03 0.99918875
 [71,] 1.650054e-03 3.300108e-03 0.99834995
 [72,] 3.617986e-03 7.235972e-03 0.99638201
 [73,] 6.040315e-03 1.208063e-02 0.99395968
 [74,] 1.115744e-02 2.231487e-02 0.98884256
 [75,] 1.355497e-02 2.710995e-02 0.98644503
 [76,] 1.601683e-02 3.203366e-02 0.98398317
 [77,] 3.055846e-02 6.111692e-02 0.96944154
 [78,] 3.483024e-02 6.966048e-02 0.96516976
 [79,] 3.832702e-02 7.665404e-02 0.96167298
 [80,] 4.215503e-02 8.431006e-02 0.95784497
 [81,] 4.699969e-02 9.399939e-02 0.95300031
 [82,] 5.412752e-02 1.082550e-01 0.94587248
 [83,] 5.793064e-02 1.158613e-01 0.94206936
 [84,] 8.544905e-02 1.708981e-01 0.91455095
 [85,] 8.626067e-02 1.725213e-01 0.91373933
 [86,] 1.424509e-01 2.849017e-01 0.85754914
 [87,] 1.550190e-01 3.100380e-01 0.84498098
 [88,] 1.728663e-01 3.457326e-01 0.82713371
 [89,] 2.653121e-01 5.306243e-01 0.73468787
 [90,] 2.624611e-01 5.249223e-01 0.73753886
 [91,] 2.517361e-01 5.034722e-01 0.74826388
 [92,] 2.392155e-01 4.784309e-01 0.76078454
 [93,] 2.313130e-01 4.626261e-01 0.76868696
 [94,] 2.327483e-01 4.654966e-01 0.76725168
 [95,] 3.656073e-01 7.312145e-01 0.63439273
 [96,] 3.280170e-01 6.560340e-01 0.67198299
 [97,] 7.244818e-01 5.510365e-01 0.27551823
 [98,] 9.187834e-01 1.624332e-01 0.08121662
 [99,] 8.972725e-01 2.054550e-01 0.10272752
[100,] 8.788602e-01 2.422796e-01 0.12113982
[101,] 8.408636e-01 3.182728e-01 0.15913638
[102,] 8.030386e-01 3.939228e-01 0.19696139
[103,] 8.983810e-01 2.032379e-01 0.10161896
[104,] 8.698448e-01 2.603103e-01 0.13015516
[105,] 8.225339e-01 3.549323e-01 0.17746614
[106,] 8.873508e-01 2.252985e-01 0.11264924
[107,] 9.108944e-01 1.782111e-01 0.08910556
[108,] 8.561522e-01 2.876956e-01 0.14384780
[109,] 8.745474e-01 2.509052e-01 0.12545261
[110,] 7.840467e-01 4.319066e-01 0.21595330
[111,] 8.497770e-01 3.004460e-01 0.15022302
> postscript(file="/var/www/html/rcomp/tmp/1yra21258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2fg881258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3uchu1258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/48pat1258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5uo941258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 120 
Frequency = 1 
          1           2           3           4           5           6 
-188.096552 -207.396552 -111.496552 -138.896552 -115.396552  -49.496552 
          7           8           9          10          11          12 
-176.696552  -73.296552  -33.896552  -93.396552   13.703448  -50.296552 
         13          14          15          16          17          18 
 -88.196552  -75.396552   -4.196552   25.803448   -4.596552   41.403448 
         19          20          21          22          23          24 
   5.703448   58.903448  118.403448   65.703448   98.503448  232.803448 
         25          26          27          28          29          30 
 136.703448   42.403448  131.103448  242.703448  196.903448 -471.280220 
         31          32          33          34          35          36 
-353.780220 -324.180220 -207.180220 -670.180220 -762.680220 -495.280220 
         37          38          39          40          41          42 
-605.180220 -438.480220 -125.880220 -308.480220 -563.780220 -145.680220 
         43          44          45          46          47          48 
-532.080220 -617.380220 -452.980220 -694.180220 -844.280220 -391.880220 
         49          50          51          52          53          54 
-326.180220 -534.380220  -34.980220 -409.080220 -172.380220 -633.780220 
         55          56          57          58          59          60 
-746.180220 -191.380220 -156.980220 -326.780220 -489.080220   75.119780 
         61          62          63          64          65          66 
-353.780220 -622.680220 -306.780220 -231.680220  158.019780 -432.180220 
         67          68          69          70          71          72 
-664.880220 -159.680220  225.419780  -60.080220 -203.380220  -55.280220 
         73          74          75          76          77          78 
-190.080220   -1.680220  199.719780  283.419780  253.519780 -285.580220 
         79          80          81          82          83          84 
  99.719780   48.119780  434.219780    2.219780   95.719780  187.619780 
         85          86          87          88          89          90 
  46.719780  314.819780  270.519780  549.019780  116.919780 -205.080220 
         91          92          93          94          95          96 
 445.319780  508.419780  762.919780  114.719780  181.619780  437.019780 
         97          98          99         100         101         102 
 500.419780   95.119780  916.319780  415.319780 1228.119780 -335.380220 
        103         104         105         106         107         108 
 294.019780  245.519780  395.619780  575.719780  -53.680220  644.619780 
        109         110         111         112         113         114 
 378.319780   80.919780  875.619780  596.919780  821.919780  380.919780 
        115         116         117         118         119         120 
 142.319780  522.019780  805.419780  572.619780  317.019780  572.219780 
> postscript(file="/var/www/html/rcomp/tmp/623gw1258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 120 
Frequency = 1 
    lag(myerror, k = 1)     myerror
  0         -188.096552          NA
  1         -207.396552 -188.096552
  2         -111.496552 -207.396552
  3         -138.896552 -111.496552
  4         -115.396552 -138.896552
  5          -49.496552 -115.396552
  6         -176.696552  -49.496552
  7          -73.296552 -176.696552
  8          -33.896552  -73.296552
  9          -93.396552  -33.896552
 10           13.703448  -93.396552
 11          -50.296552   13.703448
 12          -88.196552  -50.296552
 13          -75.396552  -88.196552
 14           -4.196552  -75.396552
 15           25.803448   -4.196552
 16           -4.596552   25.803448
 17           41.403448   -4.596552
 18            5.703448   41.403448
 19           58.903448    5.703448
 20          118.403448   58.903448
 21           65.703448  118.403448
 22           98.503448   65.703448
 23          232.803448   98.503448
 24          136.703448  232.803448
 25           42.403448  136.703448
 26          131.103448   42.403448
 27          242.703448  131.103448
 28          196.903448  242.703448
 29         -471.280220  196.903448
 30         -353.780220 -471.280220
 31         -324.180220 -353.780220
 32         -207.180220 -324.180220
 33         -670.180220 -207.180220
 34         -762.680220 -670.180220
 35         -495.280220 -762.680220
 36         -605.180220 -495.280220
 37         -438.480220 -605.180220
 38         -125.880220 -438.480220
 39         -308.480220 -125.880220
 40         -563.780220 -308.480220
 41         -145.680220 -563.780220
 42         -532.080220 -145.680220
 43         -617.380220 -532.080220
 44         -452.980220 -617.380220
 45         -694.180220 -452.980220
 46         -844.280220 -694.180220
 47         -391.880220 -844.280220
 48         -326.180220 -391.880220
 49         -534.380220 -326.180220
 50          -34.980220 -534.380220
 51         -409.080220  -34.980220
 52         -172.380220 -409.080220
 53         -633.780220 -172.380220
 54         -746.180220 -633.780220
 55         -191.380220 -746.180220
 56         -156.980220 -191.380220
 57         -326.780220 -156.980220
 58         -489.080220 -326.780220
 59           75.119780 -489.080220
 60         -353.780220   75.119780
 61         -622.680220 -353.780220
 62         -306.780220 -622.680220
 63         -231.680220 -306.780220
 64          158.019780 -231.680220
 65         -432.180220  158.019780
 66         -664.880220 -432.180220
 67         -159.680220 -664.880220
 68          225.419780 -159.680220
 69          -60.080220  225.419780
 70         -203.380220  -60.080220
 71          -55.280220 -203.380220
 72         -190.080220  -55.280220
 73           -1.680220 -190.080220
 74          199.719780   -1.680220
 75          283.419780  199.719780
 76          253.519780  283.419780
 77         -285.580220  253.519780
 78           99.719780 -285.580220
 79           48.119780   99.719780
 80          434.219780   48.119780
 81            2.219780  434.219780
 82           95.719780    2.219780
 83          187.619780   95.719780
 84           46.719780  187.619780
 85          314.819780   46.719780
 86          270.519780  314.819780
 87          549.019780  270.519780
 88          116.919780  549.019780
 89         -205.080220  116.919780
 90          445.319780 -205.080220
 91          508.419780  445.319780
 92          762.919780  508.419780
 93          114.719780  762.919780
 94          181.619780  114.719780
 95          437.019780  181.619780
 96          500.419780  437.019780
 97           95.119780  500.419780
 98          916.319780   95.119780
 99          415.319780  916.319780
100         1228.119780  415.319780
101         -335.380220 1228.119780
102          294.019780 -335.380220
103          245.519780  294.019780
104          395.619780  245.519780
105          575.719780  395.619780
106          -53.680220  575.719780
107          644.619780  -53.680220
108          378.319780  644.619780
109           80.919780  378.319780
110          875.619780   80.919780
111          596.919780  875.619780
112          821.919780  596.919780
113          380.919780  821.919780
114          142.319780  380.919780
115          522.019780  142.319780
116          805.419780  522.019780
117          572.619780  805.419780
118          317.019780  572.619780
119          572.219780  317.019780
120                  NA  572.219780
> dum1 <- dum[2:length(myerror),]
> dum1
       lag(myerror, k = 1)     myerror
  [1,]         -207.396552 -188.096552
  [2,]         -111.496552 -207.396552
  [3,]         -138.896552 -111.496552
  [4,]         -115.396552 -138.896552
  [5,]          -49.496552 -115.396552
  [6,]         -176.696552  -49.496552
  [7,]          -73.296552 -176.696552
  [8,]          -33.896552  -73.296552
  [9,]          -93.396552  -33.896552
 [10,]           13.703448  -93.396552
 [11,]          -50.296552   13.703448
 [12,]          -88.196552  -50.296552
 [13,]          -75.396552  -88.196552
 [14,]           -4.196552  -75.396552
 [15,]           25.803448   -4.196552
 [16,]           -4.596552   25.803448
 [17,]           41.403448   -4.596552
 [18,]            5.703448   41.403448
 [19,]           58.903448    5.703448
 [20,]          118.403448   58.903448
 [21,]           65.703448  118.403448
 [22,]           98.503448   65.703448
 [23,]          232.803448   98.503448
 [24,]          136.703448  232.803448
 [25,]           42.403448  136.703448
 [26,]          131.103448   42.403448
 [27,]          242.703448  131.103448
 [28,]          196.903448  242.703448
 [29,]         -471.280220  196.903448
 [30,]         -353.780220 -471.280220
 [31,]         -324.180220 -353.780220
 [32,]         -207.180220 -324.180220
 [33,]         -670.180220 -207.180220
 [34,]         -762.680220 -670.180220
 [35,]         -495.280220 -762.680220
 [36,]         -605.180220 -495.280220
 [37,]         -438.480220 -605.180220
 [38,]         -125.880220 -438.480220
 [39,]         -308.480220 -125.880220
 [40,]         -563.780220 -308.480220
 [41,]         -145.680220 -563.780220
 [42,]         -532.080220 -145.680220
 [43,]         -617.380220 -532.080220
 [44,]         -452.980220 -617.380220
 [45,]         -694.180220 -452.980220
 [46,]         -844.280220 -694.180220
 [47,]         -391.880220 -844.280220
 [48,]         -326.180220 -391.880220
 [49,]         -534.380220 -326.180220
 [50,]          -34.980220 -534.380220
 [51,]         -409.080220  -34.980220
 [52,]         -172.380220 -409.080220
 [53,]         -633.780220 -172.380220
 [54,]         -746.180220 -633.780220
 [55,]         -191.380220 -746.180220
 [56,]         -156.980220 -191.380220
 [57,]         -326.780220 -156.980220
 [58,]         -489.080220 -326.780220
 [59,]           75.119780 -489.080220
 [60,]         -353.780220   75.119780
 [61,]         -622.680220 -353.780220
 [62,]         -306.780220 -622.680220
 [63,]         -231.680220 -306.780220
 [64,]          158.019780 -231.680220
 [65,]         -432.180220  158.019780
 [66,]         -664.880220 -432.180220
 [67,]         -159.680220 -664.880220
 [68,]          225.419780 -159.680220
 [69,]          -60.080220  225.419780
 [70,]         -203.380220  -60.080220
 [71,]          -55.280220 -203.380220
 [72,]         -190.080220  -55.280220
 [73,]           -1.680220 -190.080220
 [74,]          199.719780   -1.680220
 [75,]          283.419780  199.719780
 [76,]          253.519780  283.419780
 [77,]         -285.580220  253.519780
 [78,]           99.719780 -285.580220
 [79,]           48.119780   99.719780
 [80,]          434.219780   48.119780
 [81,]            2.219780  434.219780
 [82,]           95.719780    2.219780
 [83,]          187.619780   95.719780
 [84,]           46.719780  187.619780
 [85,]          314.819780   46.719780
 [86,]          270.519780  314.819780
 [87,]          549.019780  270.519780
 [88,]          116.919780  549.019780
 [89,]         -205.080220  116.919780
 [90,]          445.319780 -205.080220
 [91,]          508.419780  445.319780
 [92,]          762.919780  508.419780
 [93,]          114.719780  762.919780
 [94,]          181.619780  114.719780
 [95,]          437.019780  181.619780
 [96,]          500.419780  437.019780
 [97,]           95.119780  500.419780
 [98,]          916.319780   95.119780
 [99,]          415.319780  916.319780
[100,]         1228.119780  415.319780
[101,]         -335.380220 1228.119780
[102,]          294.019780 -335.380220
[103,]          245.519780  294.019780
[104,]          395.619780  245.519780
[105,]          575.719780  395.619780
[106,]          -53.680220  575.719780
[107,]          644.619780  -53.680220
[108,]          378.319780  644.619780
[109,]           80.919780  378.319780
[110,]          875.619780   80.919780
[111,]          596.919780  875.619780
[112,]          821.919780  596.919780
[113,]          380.919780  821.919780
[114,]          142.319780  380.919780
[115,]          522.019780  142.319780
[116,]          805.419780  522.019780
[117,]          572.619780  805.419780
[118,]          317.019780  572.619780
[119,]          572.219780  317.019780
> z <- as.data.frame(dum1)
> z
    lag(myerror, k = 1)     myerror
1           -207.396552 -188.096552
2           -111.496552 -207.396552
3           -138.896552 -111.496552
4           -115.396552 -138.896552
5            -49.496552 -115.396552
6           -176.696552  -49.496552
7            -73.296552 -176.696552
8            -33.896552  -73.296552
9            -93.396552  -33.896552
10            13.703448  -93.396552
11           -50.296552   13.703448
12           -88.196552  -50.296552
13           -75.396552  -88.196552
14            -4.196552  -75.396552
15            25.803448   -4.196552
16            -4.596552   25.803448
17            41.403448   -4.596552
18             5.703448   41.403448
19            58.903448    5.703448
20           118.403448   58.903448
21            65.703448  118.403448
22            98.503448   65.703448
23           232.803448   98.503448
24           136.703448  232.803448
25            42.403448  136.703448
26           131.103448   42.403448
27           242.703448  131.103448
28           196.903448  242.703448
29          -471.280220  196.903448
30          -353.780220 -471.280220
31          -324.180220 -353.780220
32          -207.180220 -324.180220
33          -670.180220 -207.180220
34          -762.680220 -670.180220
35          -495.280220 -762.680220
36          -605.180220 -495.280220
37          -438.480220 -605.180220
38          -125.880220 -438.480220
39          -308.480220 -125.880220
40          -563.780220 -308.480220
41          -145.680220 -563.780220
42          -532.080220 -145.680220
43          -617.380220 -532.080220
44          -452.980220 -617.380220
45          -694.180220 -452.980220
46          -844.280220 -694.180220
47          -391.880220 -844.280220
48          -326.180220 -391.880220
49          -534.380220 -326.180220
50           -34.980220 -534.380220
51          -409.080220  -34.980220
52          -172.380220 -409.080220
53          -633.780220 -172.380220
54          -746.180220 -633.780220
55          -191.380220 -746.180220
56          -156.980220 -191.380220
57          -326.780220 -156.980220
58          -489.080220 -326.780220
59            75.119780 -489.080220
60          -353.780220   75.119780
61          -622.680220 -353.780220
62          -306.780220 -622.680220
63          -231.680220 -306.780220
64           158.019780 -231.680220
65          -432.180220  158.019780
66          -664.880220 -432.180220
67          -159.680220 -664.880220
68           225.419780 -159.680220
69           -60.080220  225.419780
70          -203.380220  -60.080220
71           -55.280220 -203.380220
72          -190.080220  -55.280220
73            -1.680220 -190.080220
74           199.719780   -1.680220
75           283.419780  199.719780
76           253.519780  283.419780
77          -285.580220  253.519780
78            99.719780 -285.580220
79            48.119780   99.719780
80           434.219780   48.119780
81             2.219780  434.219780
82            95.719780    2.219780
83           187.619780   95.719780
84            46.719780  187.619780
85           314.819780   46.719780
86           270.519780  314.819780
87           549.019780  270.519780
88           116.919780  549.019780
89          -205.080220  116.919780
90           445.319780 -205.080220
91           508.419780  445.319780
92           762.919780  508.419780
93           114.719780  762.919780
94           181.619780  114.719780
95           437.019780  181.619780
96           500.419780  437.019780
97            95.119780  500.419780
98           916.319780   95.119780
99           415.319780  916.319780
100         1228.119780  415.319780
101         -335.380220 1228.119780
102          294.019780 -335.380220
103          245.519780  294.019780
104          395.619780  245.519780
105          575.719780  395.619780
106          -53.680220  575.719780
107          644.619780  -53.680220
108          378.319780  644.619780
109           80.919780  378.319780
110          875.619780   80.919780
111          596.919780  875.619780
112          821.919780  596.919780
113          380.919780  821.919780
114          142.319780  380.919780
115          522.019780  142.319780
116          805.419780  522.019780
117          572.619780  805.419780
118          317.019780  572.619780
119          572.219780  317.019780
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7kpki1258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/8qksk1258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9r8dv1258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/1041d71258766393.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11nkg41258766393.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/129d7m1258766394.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13ytmn1258766394.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/147fqd1258766394.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15p6xl1258766394.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/160ni11258766394.tab") 
+ }
> system("convert tmp/1yra21258766393.ps tmp/1yra21258766393.png")
> system("convert tmp/2fg881258766393.ps tmp/2fg881258766393.png")
> system("convert tmp/3uchu1258766393.ps tmp/3uchu1258766393.png")
> system("convert tmp/48pat1258766393.ps tmp/48pat1258766393.png")
> system("convert tmp/5uo941258766393.ps tmp/5uo941258766393.png")
> system("convert tmp/623gw1258766393.ps tmp/623gw1258766393.png")
> system("convert tmp/7kpki1258766393.ps tmp/7kpki1258766393.png")
> system("convert tmp/8qksk1258766393.ps tmp/8qksk1258766393.png")
> system("convert tmp/9r8dv1258766393.ps tmp/9r8dv1258766393.png")
> system("convert tmp/1041d71258766393.ps tmp/1041d71258766393.png")
> 
> 
> proc.time()
   user  system elapsed 
  3.206   1.622   4.282