R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(589
+ ,0
+ ,591
+ ,595
+ ,594
+ ,611
+ ,584
+ ,0
+ ,589
+ ,591
+ ,595
+ ,594
+ ,573
+ ,0
+ ,584
+ ,589
+ ,591
+ ,595
+ ,567
+ ,0
+ ,573
+ ,584
+ ,589
+ ,591
+ ,569
+ ,0
+ ,567
+ ,573
+ ,584
+ ,589
+ ,621
+ ,0
+ ,569
+ ,567
+ ,573
+ ,584
+ ,629
+ ,0
+ ,621
+ ,569
+ ,567
+ ,573
+ ,628
+ ,0
+ ,629
+ ,621
+ ,569
+ ,567
+ ,612
+ ,0
+ ,628
+ ,629
+ ,621
+ ,569
+ ,595
+ ,0
+ ,612
+ ,628
+ ,629
+ ,621
+ ,597
+ ,0
+ ,595
+ ,612
+ ,628
+ ,629
+ ,593
+ ,0
+ ,597
+ ,595
+ ,612
+ ,628
+ ,590
+ ,0
+ ,593
+ ,597
+ ,595
+ ,612
+ ,580
+ ,0
+ ,590
+ ,593
+ ,597
+ ,595
+ ,574
+ ,0
+ ,580
+ ,590
+ ,593
+ ,597
+ ,573
+ ,0
+ ,574
+ ,580
+ ,590
+ ,593
+ ,573
+ ,0
+ ,573
+ ,574
+ ,580
+ ,590
+ ,620
+ ,0
+ ,573
+ ,573
+ ,574
+ ,580
+ ,626
+ ,0
+ ,620
+ ,573
+ ,573
+ ,574
+ ,620
+ ,0
+ ,626
+ ,620
+ ,573
+ ,573
+ ,588
+ ,0
+ ,620
+ ,626
+ ,620
+ ,573
+ ,566
+ ,0
+ ,588
+ ,620
+ ,626
+ ,620
+ ,557
+ ,0
+ ,566
+ ,588
+ ,620
+ ,626
+ ,561
+ ,0
+ ,557
+ ,566
+ ,588
+ ,620
+ ,549
+ ,0
+ ,561
+ ,557
+ ,566
+ ,588
+ ,532
+ ,0
+ ,549
+ ,561
+ ,557
+ ,566
+ ,526
+ ,0
+ ,532
+ ,549
+ ,561
+ ,557
+ ,511
+ ,0
+ ,526
+ ,532
+ ,549
+ ,561
+ ,499
+ ,0
+ ,511
+ ,526
+ ,532
+ ,549
+ ,555
+ ,0
+ ,499
+ ,511
+ ,526
+ ,532
+ ,565
+ ,0
+ ,555
+ ,499
+ ,511
+ ,526
+ ,542
+ ,0
+ ,565
+ ,555
+ ,499
+ ,511
+ ,527
+ ,0
+ ,542
+ ,565
+ ,555
+ ,499
+ ,510
+ ,0
+ ,527
+ ,542
+ ,565
+ ,555
+ ,514
+ ,0
+ ,510
+ ,527
+ ,542
+ ,565
+ ,517
+ ,0
+ ,514
+ ,510
+ ,527
+ ,542
+ ,508
+ ,0
+ ,517
+ ,514
+ ,510
+ ,527
+ ,493
+ ,0
+ ,508
+ ,517
+ ,514
+ ,510
+ ,490
+ ,0
+ ,493
+ ,508
+ ,517
+ ,514
+ ,469
+ ,0
+ ,490
+ ,493
+ ,508
+ ,517
+ ,478
+ ,0
+ ,469
+ ,490
+ ,493
+ ,508
+ ,528
+ ,0
+ ,478
+ ,469
+ ,490
+ ,493
+ ,534
+ ,0
+ ,528
+ ,478
+ ,469
+ ,490
+ ,518
+ ,1
+ ,534
+ ,528
+ ,478
+ ,469
+ ,506
+ ,1
+ ,518
+ ,534
+ ,528
+ ,478
+ ,502
+ ,1
+ ,506
+ ,518
+ ,534
+ ,528
+ ,516
+ ,1
+ ,502
+ ,506
+ ,518
+ ,534
+ ,528
+ ,1
+ ,516
+ ,502
+ ,506
+ ,518
+ ,533
+ ,1
+ ,528
+ ,516
+ ,502
+ ,506
+ ,536
+ ,1
+ ,533
+ ,528
+ ,516
+ ,502
+ ,537
+ ,1
+ ,536
+ ,533
+ ,528
+ ,516
+ ,524
+ ,1
+ ,537
+ ,536
+ ,533
+ ,528
+ ,536
+ ,1
+ ,524
+ ,537
+ ,536
+ ,533
+ ,587
+ ,1
+ ,536
+ ,524
+ ,537
+ ,536
+ ,597
+ ,1
+ ,587
+ ,536
+ ,524
+ ,537
+ ,581
+ ,1
+ ,597
+ ,587
+ ,536
+ ,524)
+ ,dim=c(6
+ ,56)
+ ,dimnames=list(c('Y'
+ ,'X'
+ ,'Y1'
+ ,'Y2'
+ ,'Y3'
+ ,'Y4')
+ ,1:56))
>  y <- array(NA,dim=c(6,56),dimnames=list(c('Y','X','Y1','Y2','Y3','Y4'),1:56))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
     Y X  Y1  Y2  Y3  Y4 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  t
1  589 0 591 595 594 611  1  0  0  0  0  0  0  0  0   0   0  1
2  584 0 589 591 595 594  0  1  0  0  0  0  0  0  0   0   0  2
3  573 0 584 589 591 595  0  0  1  0  0  0  0  0  0   0   0  3
4  567 0 573 584 589 591  0  0  0  1  0  0  0  0  0   0   0  4
5  569 0 567 573 584 589  0  0  0  0  1  0  0  0  0   0   0  5
6  621 0 569 567 573 584  0  0  0  0  0  1  0  0  0   0   0  6
7  629 0 621 569 567 573  0  0  0  0  0  0  1  0  0   0   0  7
8  628 0 629 621 569 567  0  0  0  0  0  0  0  1  0   0   0  8
9  612 0 628 629 621 569  0  0  0  0  0  0  0  0  1   0   0  9
10 595 0 612 628 629 621  0  0  0  0  0  0  0  0  0   1   0 10
11 597 0 595 612 628 629  0  0  0  0  0  0  0  0  0   0   1 11
12 593 0 597 595 612 628  0  0  0  0  0  0  0  0  0   0   0 12
13 590 0 593 597 595 612  1  0  0  0  0  0  0  0  0   0   0 13
14 580 0 590 593 597 595  0  1  0  0  0  0  0  0  0   0   0 14
15 574 0 580 590 593 597  0  0  1  0  0  0  0  0  0   0   0 15
16 573 0 574 580 590 593  0  0  0  1  0  0  0  0  0   0   0 16
17 573 0 573 574 580 590  0  0  0  0  1  0  0  0  0   0   0 17
18 620 0 573 573 574 580  0  0  0  0  0  1  0  0  0   0   0 18
19 626 0 620 573 573 574  0  0  0  0  0  0  1  0  0   0   0 19
20 620 0 626 620 573 573  0  0  0  0  0  0  0  1  0   0   0 20
21 588 0 620 626 620 573  0  0  0  0  0  0  0  0  1   0   0 21
22 566 0 588 620 626 620  0  0  0  0  0  0  0  0  0   1   0 22
23 557 0 566 588 620 626  0  0  0  0  0  0  0  0  0   0   1 23
24 561 0 557 566 588 620  0  0  0  0  0  0  0  0  0   0   0 24
25 549 0 561 557 566 588  1  0  0  0  0  0  0  0  0   0   0 25
26 532 0 549 561 557 566  0  1  0  0  0  0  0  0  0   0   0 26
27 526 0 532 549 561 557  0  0  1  0  0  0  0  0  0   0   0 27
28 511 0 526 532 549 561  0  0  0  1  0  0  0  0  0   0   0 28
29 499 0 511 526 532 549  0  0  0  0  1  0  0  0  0   0   0 29
30 555 0 499 511 526 532  0  0  0  0  0  1  0  0  0   0   0 30
31 565 0 555 499 511 526  0  0  0  0  0  0  1  0  0   0   0 31
32 542 0 565 555 499 511  0  0  0  0  0  0  0  1  0   0   0 32
33 527 0 542 565 555 499  0  0  0  0  0  0  0  0  1   0   0 33
34 510 0 527 542 565 555  0  0  0  0  0  0  0  0  0   1   0 34
35 514 0 510 527 542 565  0  0  0  0  0  0  0  0  0   0   1 35
36 517 0 514 510 527 542  0  0  0  0  0  0  0  0  0   0   0 36
37 508 0 517 514 510 527  1  0  0  0  0  0  0  0  0   0   0 37
38 493 0 508 517 514 510  0  1  0  0  0  0  0  0  0   0   0 38
39 490 0 493 508 517 514  0  0  1  0  0  0  0  0  0   0   0 39
40 469 0 490 493 508 517  0  0  0  1  0  0  0  0  0   0   0 40
41 478 0 469 490 493 508  0  0  0  0  1  0  0  0  0   0   0 41
42 528 0 478 469 490 493  0  0  0  0  0  1  0  0  0   0   0 42
43 534 0 528 478 469 490  0  0  0  0  0  0  1  0  0   0   0 43
44 518 1 534 528 478 469  0  0  0  0  0  0  0  1  0   0   0 44
45 506 1 518 534 528 478  0  0  0  0  0  0  0  0  1   0   0 45
46 502 1 506 518 534 528  0  0  0  0  0  0  0  0  0   1   0 46
47 516 1 502 506 518 534  0  0  0  0  0  0  0  0  0   0   1 47
48 528 1 516 502 506 518  0  0  0  0  0  0  0  0  0   0   0 48
49 533 1 528 516 502 506  1  0  0  0  0  0  0  0  0   0   0 49
50 536 1 533 528 516 502  0  1  0  0  0  0  0  0  0   0   0 50
51 537 1 536 533 528 516  0  0  1  0  0  0  0  0  0   0   0 51
52 524 1 537 536 533 528  0  0  0  1  0  0  0  0  0   0   0 52
53 536 1 524 537 536 533  0  0  0  0  1  0  0  0  0   0   0 53
54 587 1 536 524 537 536  0  0  0  0  0  1  0  0  0   0   0 54
55 597 1 587 536 524 537  0  0  0  0  0  0  1  0  0   0   0 55
56 581 1 597 587 536 524  0  0  0  0  0  0  0  1  0   0   0 56
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            X           Y1           Y2           Y3           Y4  
   74.86259     11.45798      0.88383      0.14893      0.06805     -0.20561  
         M1           M2           M3           M4           M5           M6  
  -11.00933    -19.39432    -15.28710    -19.65897     -6.71985     43.09483  
         M7           M8           M9          M10          M11            t  
    5.60930    -25.87023    -37.98172    -24.30985     -2.82507     -0.36025  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
     Min       1Q   Median       3Q      Max 
-13.2972  -3.0595   0.3324   3.6071  11.6386 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  74.86259   28.84990   2.595 0.013372 *  
X            11.45798    4.01351   2.855 0.006938 ** 
Y1            0.88383    0.15028   5.881 8.29e-07 ***
Y2            0.14893    0.20592   0.723 0.473966    
Y3            0.06805    0.20612   0.330 0.743089    
Y4           -0.20561    0.15849  -1.297 0.202354    
M1          -11.00933    5.01568  -2.195 0.034346 *  
M2          -19.39432    6.20817  -3.124 0.003408 ** 
M3          -15.28710    6.00491  -2.546 0.015082 *  
M4          -19.65897    5.14591  -3.820 0.000479 ***
M5           -6.71985    5.33704  -1.259 0.215675    
M6           43.09483    4.97129   8.669 1.55e-10 ***
M7            5.60930    8.93740   0.628 0.534006    
M8          -25.87023   11.08918  -2.333 0.025046 *  
M9          -37.98172   12.58719  -3.017 0.004531 ** 
M10         -24.30985    6.85896  -3.544 0.001063 ** 
M11          -2.82507    5.32112  -0.531 0.598567    
t            -0.36025    0.13288  -2.711 0.010012 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 6.264 on 38 degrees of freedom
Multiple R-squared: 0.9844,	Adjusted R-squared: 0.9774 
F-statistic: 141.2 on 17 and 38 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
           [,1]      [,2]       [,3]
 [1,] 0.6065063 0.7869874 0.39349369
 [2,] 0.4746464 0.9492929 0.52535355
 [3,] 0.5287233 0.9425534 0.47127668
 [4,] 0.6485695 0.7028609 0.35143046
 [5,] 0.5835253 0.8329495 0.41647474
 [6,] 0.4978727 0.9957455 0.50212726
 [7,] 0.4843820 0.9687640 0.51561798
 [8,] 0.4936607 0.9873214 0.50633931
 [9,] 0.8266624 0.3466752 0.17333759
[10,] 0.8858361 0.2283279 0.11416393
[11,] 0.9176620 0.1646761 0.08233803
[12,] 0.9107750 0.1784499 0.08922496
[13,] 0.8924583 0.2150833 0.10754165
[14,] 0.7883900 0.4232199 0.21160996
[15,] 0.7772159 0.4455683 0.22278413
> postscript(file="/var/www/html/rcomp/tmp/12mja1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2o8nn1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3fd281258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/448m31258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5aqcm1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 56 
Frequency = 1 
            1             2             3             4             5 
-2.451057e-01  2.300095e+00 -7.252037e+00  1.260556e+00 -2.448087e+00 
            6             7             8             9            10 
-1.056101e+00 -3.320913e+00  1.133432e+01  4.370991e+00 -1.503086e+00 
           11            12            13            14            15 
-1.506709e+00 -6.324228e+00  3.149985e+00  1.510967e+00  1.732539e+00 
           16            17            18            19            20 
 1.163864e+01  9.008561e-01 -3.052426e+00 -1.912433e+00  1.141925e+01 
           21            22            23            24            25 
-6.898020e+00 -3.778072e+00 -8.050678e+00  5.659393e+00 -2.248375e+00 
           26            27            28            29            30 
-4.403761e+00  5.388510e-01 -2.552217e-01 -1.199345e+01  4.304960e+00 
           31            32            33            34            35 
 4.230286e+00 -6.375598e+00  3.656822e+00  8.615994e-01  4.617424e+00 
           36            37            38            39            40 
 4.407768e-01 -2.364088e+00 -4.878685e+00  3.590460e+00 -6.562732e+00 
           41            42            43            44            45 
 8.035989e+00  8.745031e-01  5.445569e-04 -1.329719e+01 -1.129793e+00 
           46            47            48            49            50 
 4.419559e+00  4.939963e+00  2.240583e-01  1.707583e+00  5.471384e+00 
           51            52            53            54            55 
 1.390188e+00 -6.081243e+00  5.504694e+00 -1.070935e+00  1.002515e+00 
           56 
-3.080783e+00 
> postscript(file="/var/www/html/rcomp/tmp/6k30x1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 56 
Frequency = 1 
   lag(myerror, k = 1)       myerror
 0       -2.451057e-01            NA
 1        2.300095e+00 -2.451057e-01
 2       -7.252037e+00  2.300095e+00
 3        1.260556e+00 -7.252037e+00
 4       -2.448087e+00  1.260556e+00
 5       -1.056101e+00 -2.448087e+00
 6       -3.320913e+00 -1.056101e+00
 7        1.133432e+01 -3.320913e+00
 8        4.370991e+00  1.133432e+01
 9       -1.503086e+00  4.370991e+00
10       -1.506709e+00 -1.503086e+00
11       -6.324228e+00 -1.506709e+00
12        3.149985e+00 -6.324228e+00
13        1.510967e+00  3.149985e+00
14        1.732539e+00  1.510967e+00
15        1.163864e+01  1.732539e+00
16        9.008561e-01  1.163864e+01
17       -3.052426e+00  9.008561e-01
18       -1.912433e+00 -3.052426e+00
19        1.141925e+01 -1.912433e+00
20       -6.898020e+00  1.141925e+01
21       -3.778072e+00 -6.898020e+00
22       -8.050678e+00 -3.778072e+00
23        5.659393e+00 -8.050678e+00
24       -2.248375e+00  5.659393e+00
25       -4.403761e+00 -2.248375e+00
26        5.388510e-01 -4.403761e+00
27       -2.552217e-01  5.388510e-01
28       -1.199345e+01 -2.552217e-01
29        4.304960e+00 -1.199345e+01
30        4.230286e+00  4.304960e+00
31       -6.375598e+00  4.230286e+00
32        3.656822e+00 -6.375598e+00
33        8.615994e-01  3.656822e+00
34        4.617424e+00  8.615994e-01
35        4.407768e-01  4.617424e+00
36       -2.364088e+00  4.407768e-01
37       -4.878685e+00 -2.364088e+00
38        3.590460e+00 -4.878685e+00
39       -6.562732e+00  3.590460e+00
40        8.035989e+00 -6.562732e+00
41        8.745031e-01  8.035989e+00
42        5.445569e-04  8.745031e-01
43       -1.329719e+01  5.445569e-04
44       -1.129793e+00 -1.329719e+01
45        4.419559e+00 -1.129793e+00
46        4.939963e+00  4.419559e+00
47        2.240583e-01  4.939963e+00
48        1.707583e+00  2.240583e-01
49        5.471384e+00  1.707583e+00
50        1.390188e+00  5.471384e+00
51       -6.081243e+00  1.390188e+00
52        5.504694e+00 -6.081243e+00
53       -1.070935e+00  5.504694e+00
54        1.002515e+00 -1.070935e+00
55       -3.080783e+00  1.002515e+00
56                  NA -3.080783e+00
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)       myerror
 [1,]        2.300095e+00 -2.451057e-01
 [2,]       -7.252037e+00  2.300095e+00
 [3,]        1.260556e+00 -7.252037e+00
 [4,]       -2.448087e+00  1.260556e+00
 [5,]       -1.056101e+00 -2.448087e+00
 [6,]       -3.320913e+00 -1.056101e+00
 [7,]        1.133432e+01 -3.320913e+00
 [8,]        4.370991e+00  1.133432e+01
 [9,]       -1.503086e+00  4.370991e+00
[10,]       -1.506709e+00 -1.503086e+00
[11,]       -6.324228e+00 -1.506709e+00
[12,]        3.149985e+00 -6.324228e+00
[13,]        1.510967e+00  3.149985e+00
[14,]        1.732539e+00  1.510967e+00
[15,]        1.163864e+01  1.732539e+00
[16,]        9.008561e-01  1.163864e+01
[17,]       -3.052426e+00  9.008561e-01
[18,]       -1.912433e+00 -3.052426e+00
[19,]        1.141925e+01 -1.912433e+00
[20,]       -6.898020e+00  1.141925e+01
[21,]       -3.778072e+00 -6.898020e+00
[22,]       -8.050678e+00 -3.778072e+00
[23,]        5.659393e+00 -8.050678e+00
[24,]       -2.248375e+00  5.659393e+00
[25,]       -4.403761e+00 -2.248375e+00
[26,]        5.388510e-01 -4.403761e+00
[27,]       -2.552217e-01  5.388510e-01
[28,]       -1.199345e+01 -2.552217e-01
[29,]        4.304960e+00 -1.199345e+01
[30,]        4.230286e+00  4.304960e+00
[31,]       -6.375598e+00  4.230286e+00
[32,]        3.656822e+00 -6.375598e+00
[33,]        8.615994e-01  3.656822e+00
[34,]        4.617424e+00  8.615994e-01
[35,]        4.407768e-01  4.617424e+00
[36,]       -2.364088e+00  4.407768e-01
[37,]       -4.878685e+00 -2.364088e+00
[38,]        3.590460e+00 -4.878685e+00
[39,]       -6.562732e+00  3.590460e+00
[40,]        8.035989e+00 -6.562732e+00
[41,]        8.745031e-01  8.035989e+00
[42,]        5.445569e-04  8.745031e-01
[43,]       -1.329719e+01  5.445569e-04
[44,]       -1.129793e+00 -1.329719e+01
[45,]        4.419559e+00 -1.129793e+00
[46,]        4.939963e+00  4.419559e+00
[47,]        2.240583e-01  4.939963e+00
[48,]        1.707583e+00  2.240583e-01
[49,]        5.471384e+00  1.707583e+00
[50,]        1.390188e+00  5.471384e+00
[51,]       -6.081243e+00  1.390188e+00
[52,]        5.504694e+00 -6.081243e+00
[53,]       -1.070935e+00  5.504694e+00
[54,]        1.002515e+00 -1.070935e+00
[55,]       -3.080783e+00  1.002515e+00
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)       myerror
1         2.300095e+00 -2.451057e-01
2        -7.252037e+00  2.300095e+00
3         1.260556e+00 -7.252037e+00
4        -2.448087e+00  1.260556e+00
5        -1.056101e+00 -2.448087e+00
6        -3.320913e+00 -1.056101e+00
7         1.133432e+01 -3.320913e+00
8         4.370991e+00  1.133432e+01
9        -1.503086e+00  4.370991e+00
10       -1.506709e+00 -1.503086e+00
11       -6.324228e+00 -1.506709e+00
12        3.149985e+00 -6.324228e+00
13        1.510967e+00  3.149985e+00
14        1.732539e+00  1.510967e+00
15        1.163864e+01  1.732539e+00
16        9.008561e-01  1.163864e+01
17       -3.052426e+00  9.008561e-01
18       -1.912433e+00 -3.052426e+00
19        1.141925e+01 -1.912433e+00
20       -6.898020e+00  1.141925e+01
21       -3.778072e+00 -6.898020e+00
22       -8.050678e+00 -3.778072e+00
23        5.659393e+00 -8.050678e+00
24       -2.248375e+00  5.659393e+00
25       -4.403761e+00 -2.248375e+00
26        5.388510e-01 -4.403761e+00
27       -2.552217e-01  5.388510e-01
28       -1.199345e+01 -2.552217e-01
29        4.304960e+00 -1.199345e+01
30        4.230286e+00  4.304960e+00
31       -6.375598e+00  4.230286e+00
32        3.656822e+00 -6.375598e+00
33        8.615994e-01  3.656822e+00
34        4.617424e+00  8.615994e-01
35        4.407768e-01  4.617424e+00
36       -2.364088e+00  4.407768e-01
37       -4.878685e+00 -2.364088e+00
38        3.590460e+00 -4.878685e+00
39       -6.562732e+00  3.590460e+00
40        8.035989e+00 -6.562732e+00
41        8.745031e-01  8.035989e+00
42        5.445569e-04  8.745031e-01
43       -1.329719e+01  5.445569e-04
44       -1.129793e+00 -1.329719e+01
45        4.419559e+00 -1.129793e+00
46        4.939963e+00  4.419559e+00
47        2.240583e-01  4.939963e+00
48        1.707583e+00  2.240583e-01
49        5.471384e+00  1.707583e+00
50        1.390188e+00  5.471384e+00
51       -6.081243e+00  1.390188e+00
52        5.504694e+00 -6.081243e+00
53       -1.070935e+00  5.504694e+00
54        1.002515e+00 -1.070935e+00
55       -3.080783e+00  1.002515e+00
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7bh7l1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/81vic1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/97fjd1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/10z3eq1258658203.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11mzbz1258658203.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/12uj3t1258658203.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13bl2g1258658203.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14mtrg1258658203.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15h1vx1258658204.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16gila1258658204.tab") 
+ }
> system("convert tmp/12mja1258658203.ps tmp/12mja1258658203.png")
> system("convert tmp/2o8nn1258658203.ps tmp/2o8nn1258658203.png")
> system("convert tmp/3fd281258658203.ps tmp/3fd281258658203.png")
> system("convert tmp/448m31258658203.ps tmp/448m31258658203.png")
> system("convert tmp/5aqcm1258658203.ps tmp/5aqcm1258658203.png")
> system("convert tmp/6k30x1258658203.ps tmp/6k30x1258658203.png")
> system("convert tmp/7bh7l1258658203.ps tmp/7bh7l1258658203.png")
> system("convert tmp/81vic1258658203.ps tmp/81vic1258658203.png")
> system("convert tmp/97fjd1258658203.ps tmp/97fjd1258658203.png")
> system("convert tmp/10z3eq1258658203.ps tmp/10z3eq1258658203.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.326   1.544   2.724