R version 2.9.0 (2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> x <- array(list(216234
+ ,562325
+ ,213587
+ ,560854
+ ,209465
+ ,555332
+ ,204045
+ ,543599
+ ,200237
+ ,536662
+ ,203666
+ ,542722
+ ,241476
+ ,593530
+ ,260307
+ ,610763
+ ,243324
+ ,612613
+ ,244460
+ ,611324
+ ,233575
+ ,594167
+ ,237217
+ ,595454
+ ,235243
+ ,590865
+ ,230354
+ ,589379
+ ,227184
+ ,584428
+ ,221678
+ ,573100
+ ,217142
+ ,567456
+ ,219452
+ ,569028
+ ,256446
+ ,620735
+ ,265845
+ ,628884
+ ,248624
+ ,628232
+ ,241114
+ ,612117
+ ,229245
+ ,595404
+ ,231805
+ ,597141
+ ,219277
+ ,593408
+ ,219313
+ ,590072
+ ,212610
+ ,579799
+ ,214771
+ ,574205
+ ,211142
+ ,572775
+ ,211457
+ ,572942
+ ,240048
+ ,619567
+ ,240636
+ ,625809
+ ,230580
+ ,619916
+ ,208795
+ ,587625
+ ,197922
+ ,565742
+ ,194596
+ ,557274
+ ,194581
+ ,560576
+ ,185686
+ ,548854
+ ,178106
+ ,531673
+ ,172608
+ ,525919
+ ,167302
+ ,511038
+ ,168053
+ ,498662
+ ,202300
+ ,555362
+ ,202388
+ ,564591
+ ,182516
+ ,541657
+ ,173476
+ ,527070
+ ,166444
+ ,509846
+ ,171297
+ ,514258
+ ,169701
+ ,516922
+ ,164182
+ ,507561
+ ,161914
+ ,492622
+ ,159612
+ ,490243
+ ,151001
+ ,469357
+ ,158114
+ ,477580
+ ,186530
+ ,528379
+ ,187069
+ ,533590
+ ,174330
+ ,517945
+ ,169362
+ ,506174
+ ,166827
+ ,501866
+ ,178037
+ ,516141
+ ,186412
+ ,528222
+ ,189226
+ ,532638
+ ,191563
+ ,536322
+ ,188906
+ ,536535
+ ,186005
+ ,523597
+ ,195309
+ ,536214
+ ,223532
+ ,586570
+ ,226899
+ ,596594
+ ,214126
+ ,580523)
+ ,dim=c(2
+ ,69)
+ ,dimnames=list(c('Y'
+ ,'X')
+ ,1:69))
>  y <- array(NA,dim=c(2,69),dimnames=list(c('Y','X'),1:69))
>  for (i in 1:dim(x)[1])
+  {
+  	for (j in 1:dim(x)[2])
+  	{
+  		y[i,j] <- as.numeric(x[i,j])
+  	}
+  }
> par3 = 'No Linear Trend'
> par2 = 'Include Monthly Dummies'
> par1 = '1'
> #'GNU S' R Code compiled by R2WASP v. 1.0.44 ()
> #Author: Prof. Dr. P. Wessa
> #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/
> #Source of accompanying publication: Office for Research, Development, and Education
> #Technical description: Write here your technical program description (don't use hard returns!)
> library(lattice)
> library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
	The following object(s) are masked from package:base :
	 as.Date.numeric 
> n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
> par1 <- as.numeric(par1)
> x <- t(y)
> k <- length(x[1,])
> n <- length(x[,1])
> x1 <- cbind(x[,par1], x[,1:k!=par1])
> mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
> colnames(x1) <- mycolnames #colnames(x)[par1]
> x <- x1
> if (par3 == 'First Differences'){
+ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
+ for (i in 1:n-1) {
+ for (j in 1:k) {
+ x2[i,j] <- x[i+1,j] - x[i,j]
+ }
+ }
+ x <- x2
+ }
> if (par2 == 'Include Monthly Dummies'){
+ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
+ for (i in 1:11){
+ x2[seq(i,n,12),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> if (par2 == 'Include Quarterly Dummies'){
+ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
+ for (i in 1:3){
+ x2[seq(i,n,4),i] <- 1
+ }
+ x <- cbind(x, x2)
+ }
> k <- length(x[1,])
> if (par3 == 'Linear Trend'){
+ x <- cbind(x, c(1:n))
+ colnames(x)[k+1] <- 't'
+ }
> x
        Y      X M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
1  216234 562325  1  0  0  0  0  0  0  0  0   0   0
2  213587 560854  0  1  0  0  0  0  0  0  0   0   0
3  209465 555332  0  0  1  0  0  0  0  0  0   0   0
4  204045 543599  0  0  0  1  0  0  0  0  0   0   0
5  200237 536662  0  0  0  0  1  0  0  0  0   0   0
6  203666 542722  0  0  0  0  0  1  0  0  0   0   0
7  241476 593530  0  0  0  0  0  0  1  0  0   0   0
8  260307 610763  0  0  0  0  0  0  0  1  0   0   0
9  243324 612613  0  0  0  0  0  0  0  0  1   0   0
10 244460 611324  0  0  0  0  0  0  0  0  0   1   0
11 233575 594167  0  0  0  0  0  0  0  0  0   0   1
12 237217 595454  0  0  0  0  0  0  0  0  0   0   0
13 235243 590865  1  0  0  0  0  0  0  0  0   0   0
14 230354 589379  0  1  0  0  0  0  0  0  0   0   0
15 227184 584428  0  0  1  0  0  0  0  0  0   0   0
16 221678 573100  0  0  0  1  0  0  0  0  0   0   0
17 217142 567456  0  0  0  0  1  0  0  0  0   0   0
18 219452 569028  0  0  0  0  0  1  0  0  0   0   0
19 256446 620735  0  0  0  0  0  0  1  0  0   0   0
20 265845 628884  0  0  0  0  0  0  0  1  0   0   0
21 248624 628232  0  0  0  0  0  0  0  0  1   0   0
22 241114 612117  0  0  0  0  0  0  0  0  0   1   0
23 229245 595404  0  0  0  0  0  0  0  0  0   0   1
24 231805 597141  0  0  0  0  0  0  0  0  0   0   0
25 219277 593408  1  0  0  0  0  0  0  0  0   0   0
26 219313 590072  0  1  0  0  0  0  0  0  0   0   0
27 212610 579799  0  0  1  0  0  0  0  0  0   0   0
28 214771 574205  0  0  0  1  0  0  0  0  0   0   0
29 211142 572775  0  0  0  0  1  0  0  0  0   0   0
30 211457 572942  0  0  0  0  0  1  0  0  0   0   0
31 240048 619567  0  0  0  0  0  0  1  0  0   0   0
32 240636 625809  0  0  0  0  0  0  0  1  0   0   0
33 230580 619916  0  0  0  0  0  0  0  0  1   0   0
34 208795 587625  0  0  0  0  0  0  0  0  0   1   0
35 197922 565742  0  0  0  0  0  0  0  0  0   0   1
36 194596 557274  0  0  0  0  0  0  0  0  0   0   0
37 194581 560576  1  0  0  0  0  0  0  0  0   0   0
38 185686 548854  0  1  0  0  0  0  0  0  0   0   0
39 178106 531673  0  0  1  0  0  0  0  0  0   0   0
40 172608 525919  0  0  0  1  0  0  0  0  0   0   0
41 167302 511038  0  0  0  0  1  0  0  0  0   0   0
42 168053 498662  0  0  0  0  0  1  0  0  0   0   0
43 202300 555362  0  0  0  0  0  0  1  0  0   0   0
44 202388 564591  0  0  0  0  0  0  0  1  0   0   0
45 182516 541657  0  0  0  0  0  0  0  0  1   0   0
46 173476 527070  0  0  0  0  0  0  0  0  0   1   0
47 166444 509846  0  0  0  0  0  0  0  0  0   0   1
48 171297 514258  0  0  0  0  0  0  0  0  0   0   0
49 169701 516922  1  0  0  0  0  0  0  0  0   0   0
50 164182 507561  0  1  0  0  0  0  0  0  0   0   0
51 161914 492622  0  0  1  0  0  0  0  0  0   0   0
52 159612 490243  0  0  0  1  0  0  0  0  0   0   0
53 151001 469357  0  0  0  0  1  0  0  0  0   0   0
54 158114 477580  0  0  0  0  0  1  0  0  0   0   0
55 186530 528379  0  0  0  0  0  0  1  0  0   0   0
56 187069 533590  0  0  0  0  0  0  0  1  0   0   0
57 174330 517945  0  0  0  0  0  0  0  0  1   0   0
58 169362 506174  0  0  0  0  0  0  0  0  0   1   0
59 166827 501866  0  0  0  0  0  0  0  0  0   0   1
60 178037 516141  0  0  0  0  0  0  0  0  0   0   0
61 186412 528222  1  0  0  0  0  0  0  0  0   0   0
62 189226 532638  0  1  0  0  0  0  0  0  0   0   0
63 191563 536322  0  0  1  0  0  0  0  0  0   0   0
64 188906 536535  0  0  0  1  0  0  0  0  0   0   0
65 186005 523597  0  0  0  0  1  0  0  0  0   0   0
66 195309 536214  0  0  0  0  0  1  0  0  0   0   0
67 223532 586570  0  0  0  0  0  0  1  0  0   0   0
68 226899 596594  0  0  0  0  0  0  0  1  0   0   0
69 214126 580523  0  0  0  0  0  0  0  0  1   0   0
> k <- length(x[1,])
> df <- as.data.frame(x)
> (mylm <- lm(df))
Call:
lm(formula = df)
Coefficients:
(Intercept)            X           M1           M2           M3           M4  
 -1.882e+05    7.028e-01   -8.895e+02   -1.383e+03    7.934e+02    1.874e+03  
         M5           M6           M7           M8           M9          M10  
  4.422e+03    6.387e+03    2.806e+03    1.705e+03   -6.284e+03   -4.151e+03  
        M11  
 -1.926e+03  
> (mysum <- summary(mylm))
Call:
lm(formula = df)
Residuals:
   Min     1Q Median     3Q    Max 
-12686  -5803    924   4922  17560 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.882e+05  1.469e+04 -12.810   <2e-16 ***
X            7.028e-01  2.574e-02  27.310   <2e-16 ***
M1          -8.895e+02  4.514e+03  -0.197    0.844    
M2          -1.383e+03  4.514e+03  -0.306    0.760    
M3           7.934e+02  4.520e+03   0.176    0.861    
M4           1.874e+03  4.531e+03   0.414    0.681    
M5           4.422e+03  4.562e+03   0.969    0.337    
M6           6.387e+03  4.553e+03   1.403    0.166    
M7           2.806e+03  4.571e+03   0.614    0.542    
M8           1.705e+03  4.615e+03   0.369    0.713    
M9          -6.284e+03  4.568e+03  -1.376    0.174    
M10         -4.151e+03  4.726e+03  -0.878    0.383    
M11         -1.926e+03  4.715e+03  -0.409    0.684    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 7454 on 56 degrees of freedom
Multiple R-squared: 0.944,	Adjusted R-squared: 0.932 
F-statistic: 78.72 on 12 and 56 DF,  p-value: < 2.2e-16 
> if (n > n25) {
+ kp3 <- k + 3
+ nmkm3 <- n - k - 3
+ gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
+ numgqtests <- 0
+ numsignificant1 <- 0
+ numsignificant5 <- 0
+ numsignificant10 <- 0
+ for (mypoint in kp3:nmkm3) {
+ j <- 0
+ numgqtests <- numgqtests + 1
+ for (myalt in c('greater', 'two.sided', 'less')) {
+ j <- j + 1
+ gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
+ }
+ if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
+ if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
+ }
+ gqarr
+ }
              [,1]         [,2]         [,3]
 [1,] 2.207700e-03 4.415401e-03 9.977923e-01
 [2,] 9.040803e-04 1.808161e-03 9.990959e-01
 [3,] 1.135761e-04 2.271522e-04 9.998864e-01
 [4,] 3.232893e-05 6.465785e-05 9.999677e-01
 [5,] 1.464589e-03 2.929177e-03 9.985354e-01
 [6,] 1.681908e-03 3.363816e-03 9.983181e-01
 [7,] 2.728697e-03 5.457395e-03 9.972713e-01
 [8,] 6.294510e-03 1.258902e-02 9.937055e-01
 [9,] 2.121992e-02 4.243985e-02 9.787801e-01
[10,] 5.021319e-01 9.957362e-01 4.978681e-01
[11,] 6.440638e-01 7.118724e-01 3.559362e-01
[12,] 7.311408e-01 5.377184e-01 2.688592e-01
[13,] 7.628756e-01 4.742488e-01 2.371244e-01
[14,] 7.489287e-01 5.021425e-01 2.510713e-01
[15,] 7.370188e-01 5.259625e-01 2.629812e-01
[16,] 8.368797e-01 3.262406e-01 1.631203e-01
[17,] 9.760492e-01 4.790158e-02 2.395079e-02
[18,] 9.817206e-01 3.655878e-02 1.827939e-02
[19,] 9.946907e-01 1.061862e-02 5.309311e-03
[20,] 9.964463e-01 7.107377e-03 3.553689e-03
[21,] 9.971997e-01 5.600547e-03 2.800273e-03
[22,] 9.976816e-01 4.636734e-03 2.318367e-03
[23,] 9.984760e-01 3.047961e-03 1.523981e-03
[24,] 9.989032e-01 2.193582e-03 1.096791e-03
[25,] 9.994237e-01 1.152572e-03 5.762862e-04
[26,] 9.997757e-01 4.485419e-04 2.242710e-04
[27,] 9.995336e-01 9.328257e-04 4.664128e-04
[28,] 9.988419e-01 2.316280e-03 1.158140e-03
[29,] 9.980966e-01 3.806730e-03 1.903365e-03
[30,] 9.979074e-01 4.185284e-03 2.092642e-03
[31,] 9.986465e-01 2.706935e-03 1.353467e-03
[32,] 9.979045e-01 4.191077e-03 2.095538e-03
[33,] 9.967090e-01 6.582030e-03 3.291015e-03
[34,] 9.990377e-01 1.924500e-03 9.622502e-04
[35,] 9.999997e-01 6.951341e-07 3.475670e-07
[36,] 1.000000e+00 3.406849e-08 1.703424e-08
[37,] 9.999993e-01 1.402211e-06 7.011056e-07
[38,] 9.999989e-01 2.229824e-06 1.114912e-06
> postscript(file="/var/www/html/rcomp/tmp/1vz381258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
> points(x[,1]-mysum$resid)
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/2ptc71258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/3ck7i1258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/4oc271258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/5yy1a1258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
> qqline(mysum$resid)
> grid()
> dev.off()
null device 
          1 
> (myerror <- as.ts(mysum$resid))
Time Series:
Start = 1 
End = 69 
Frequency = 1 
          1           2           3           4           5           6 
 10125.3807   9006.0702   6588.3213   8333.9831   6853.5513   4058.0738 
          7           8           9          10          11          12 
  9739.4048  17559.8881   7265.6920   7174.8415   6123.4601   6934.6396 
         13          14          15          16          17          18 
  9075.4841   5724.7161   3857.6487   5232.6626   2115.4658   1355.3095 
         19          20          21          22          23          24 
  5588.7922  10361.8241   1588.1200   3271.4937    924.0539    336.9578 
         25          26          27          28          29          30 
 -8677.8240  -5803.3482  -7462.9304  -2450.9695  -7622.9109  -9390.5847 
         31          32          33          34          35          36 
 -9988.2971 -12685.9598 -10611.1083 -11833.6837  -9551.4692  -8852.1392 
         37          38          39          40          41          42 
-10298.3618 -10460.9158  -8142.3173 -10676.9029  -8072.0175   -588.0381 
         43          44          45          46          47          48 
 -2610.8081  -7907.8374  -3671.9832  -4592.5406  -1743.8321  -1918.0104 
         49          50          51          52          53          54 
 -4496.8246  -2942.7708   3112.0727   1401.4207   4921.8273   4290.1188 
         55          56          57          58          59          60 
   583.7752  -1438.2651   4807.6284   5979.8891   4247.7872   3498.5522 
         61          62          63          64          65          66 
  4272.1456   4476.2484   2047.2051  -1840.1940   1804.0841    275.1208 
         67          68          69 
 -3312.8671  -5889.6499    621.6511 
> postscript(file="/var/www/html/rcomp/tmp/6xuzy1258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> dum <- cbind(lag(myerror,k=1),myerror)
> dum
Time Series:
Start = 0 
End = 69 
Frequency = 1 
   lag(myerror, k = 1)     myerror
 0          10125.3807          NA
 1           9006.0702  10125.3807
 2           6588.3213   9006.0702
 3           8333.9831   6588.3213
 4           6853.5513   8333.9831
 5           4058.0738   6853.5513
 6           9739.4048   4058.0738
 7          17559.8881   9739.4048
 8           7265.6920  17559.8881
 9           7174.8415   7265.6920
10           6123.4601   7174.8415
11           6934.6396   6123.4601
12           9075.4841   6934.6396
13           5724.7161   9075.4841
14           3857.6487   5724.7161
15           5232.6626   3857.6487
16           2115.4658   5232.6626
17           1355.3095   2115.4658
18           5588.7922   1355.3095
19          10361.8241   5588.7922
20           1588.1200  10361.8241
21           3271.4937   1588.1200
22            924.0539   3271.4937
23            336.9578    924.0539
24          -8677.8240    336.9578
25          -5803.3482  -8677.8240
26          -7462.9304  -5803.3482
27          -2450.9695  -7462.9304
28          -7622.9109  -2450.9695
29          -9390.5847  -7622.9109
30          -9988.2971  -9390.5847
31         -12685.9598  -9988.2971
32         -10611.1083 -12685.9598
33         -11833.6837 -10611.1083
34          -9551.4692 -11833.6837
35          -8852.1392  -9551.4692
36         -10298.3618  -8852.1392
37         -10460.9158 -10298.3618
38          -8142.3173 -10460.9158
39         -10676.9029  -8142.3173
40          -8072.0175 -10676.9029
41           -588.0381  -8072.0175
42          -2610.8081   -588.0381
43          -7907.8374  -2610.8081
44          -3671.9832  -7907.8374
45          -4592.5406  -3671.9832
46          -1743.8321  -4592.5406
47          -1918.0104  -1743.8321
48          -4496.8246  -1918.0104
49          -2942.7708  -4496.8246
50           3112.0727  -2942.7708
51           1401.4207   3112.0727
52           4921.8273   1401.4207
53           4290.1188   4921.8273
54            583.7752   4290.1188
55          -1438.2651    583.7752
56           4807.6284  -1438.2651
57           5979.8891   4807.6284
58           4247.7872   5979.8891
59           3498.5522   4247.7872
60           4272.1456   3498.5522
61           4476.2484   4272.1456
62           2047.2051   4476.2484
63          -1840.1940   2047.2051
64           1804.0841  -1840.1940
65            275.1208   1804.0841
66          -3312.8671    275.1208
67          -5889.6499  -3312.8671
68            621.6511  -5889.6499
69                  NA    621.6511
> dum1 <- dum[2:length(myerror),]
> dum1
      lag(myerror, k = 1)     myerror
 [1,]           9006.0702  10125.3807
 [2,]           6588.3213   9006.0702
 [3,]           8333.9831   6588.3213
 [4,]           6853.5513   8333.9831
 [5,]           4058.0738   6853.5513
 [6,]           9739.4048   4058.0738
 [7,]          17559.8881   9739.4048
 [8,]           7265.6920  17559.8881
 [9,]           7174.8415   7265.6920
[10,]           6123.4601   7174.8415
[11,]           6934.6396   6123.4601
[12,]           9075.4841   6934.6396
[13,]           5724.7161   9075.4841
[14,]           3857.6487   5724.7161
[15,]           5232.6626   3857.6487
[16,]           2115.4658   5232.6626
[17,]           1355.3095   2115.4658
[18,]           5588.7922   1355.3095
[19,]          10361.8241   5588.7922
[20,]           1588.1200  10361.8241
[21,]           3271.4937   1588.1200
[22,]            924.0539   3271.4937
[23,]            336.9578    924.0539
[24,]          -8677.8240    336.9578
[25,]          -5803.3482  -8677.8240
[26,]          -7462.9304  -5803.3482
[27,]          -2450.9695  -7462.9304
[28,]          -7622.9109  -2450.9695
[29,]          -9390.5847  -7622.9109
[30,]          -9988.2971  -9390.5847
[31,]         -12685.9598  -9988.2971
[32,]         -10611.1083 -12685.9598
[33,]         -11833.6837 -10611.1083
[34,]          -9551.4692 -11833.6837
[35,]          -8852.1392  -9551.4692
[36,]         -10298.3618  -8852.1392
[37,]         -10460.9158 -10298.3618
[38,]          -8142.3173 -10460.9158
[39,]         -10676.9029  -8142.3173
[40,]          -8072.0175 -10676.9029
[41,]           -588.0381  -8072.0175
[42,]          -2610.8081   -588.0381
[43,]          -7907.8374  -2610.8081
[44,]          -3671.9832  -7907.8374
[45,]          -4592.5406  -3671.9832
[46,]          -1743.8321  -4592.5406
[47,]          -1918.0104  -1743.8321
[48,]          -4496.8246  -1918.0104
[49,]          -2942.7708  -4496.8246
[50,]           3112.0727  -2942.7708
[51,]           1401.4207   3112.0727
[52,]           4921.8273   1401.4207
[53,]           4290.1188   4921.8273
[54,]            583.7752   4290.1188
[55,]          -1438.2651    583.7752
[56,]           4807.6284  -1438.2651
[57,]           5979.8891   4807.6284
[58,]           4247.7872   5979.8891
[59,]           3498.5522   4247.7872
[60,]           4272.1456   3498.5522
[61,]           4476.2484   4272.1456
[62,]           2047.2051   4476.2484
[63,]          -1840.1940   2047.2051
[64,]           1804.0841  -1840.1940
[65,]            275.1208   1804.0841
[66,]          -3312.8671    275.1208
[67,]          -5889.6499  -3312.8671
[68,]            621.6511  -5889.6499
> z <- as.data.frame(dum1)
> z
   lag(myerror, k = 1)     myerror
1            9006.0702  10125.3807
2            6588.3213   9006.0702
3            8333.9831   6588.3213
4            6853.5513   8333.9831
5            4058.0738   6853.5513
6            9739.4048   4058.0738
7           17559.8881   9739.4048
8            7265.6920  17559.8881
9            7174.8415   7265.6920
10           6123.4601   7174.8415
11           6934.6396   6123.4601
12           9075.4841   6934.6396
13           5724.7161   9075.4841
14           3857.6487   5724.7161
15           5232.6626   3857.6487
16           2115.4658   5232.6626
17           1355.3095   2115.4658
18           5588.7922   1355.3095
19          10361.8241   5588.7922
20           1588.1200  10361.8241
21           3271.4937   1588.1200
22            924.0539   3271.4937
23            336.9578    924.0539
24          -8677.8240    336.9578
25          -5803.3482  -8677.8240
26          -7462.9304  -5803.3482
27          -2450.9695  -7462.9304
28          -7622.9109  -2450.9695
29          -9390.5847  -7622.9109
30          -9988.2971  -9390.5847
31         -12685.9598  -9988.2971
32         -10611.1083 -12685.9598
33         -11833.6837 -10611.1083
34          -9551.4692 -11833.6837
35          -8852.1392  -9551.4692
36         -10298.3618  -8852.1392
37         -10460.9158 -10298.3618
38          -8142.3173 -10460.9158
39         -10676.9029  -8142.3173
40          -8072.0175 -10676.9029
41           -588.0381  -8072.0175
42          -2610.8081   -588.0381
43          -7907.8374  -2610.8081
44          -3671.9832  -7907.8374
45          -4592.5406  -3671.9832
46          -1743.8321  -4592.5406
47          -1918.0104  -1743.8321
48          -4496.8246  -1918.0104
49          -2942.7708  -4496.8246
50           3112.0727  -2942.7708
51           1401.4207   3112.0727
52           4921.8273   1401.4207
53           4290.1188   4921.8273
54            583.7752   4290.1188
55          -1438.2651    583.7752
56           4807.6284  -1438.2651
57           5979.8891   4807.6284
58           4247.7872   5979.8891
59           3498.5522   4247.7872
60           4272.1456   3498.5522
61           4476.2484   4272.1456
62           2047.2051   4476.2484
63          -1840.1940   2047.2051
64           1804.0841  -1840.1940
65            275.1208   1804.0841
66          -3312.8671    275.1208
67          -5889.6499  -3312.8671
68            621.6511  -5889.6499
> plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
> lines(lowess(z))
> abline(lm(z))
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/7blg01258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/89nop1258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
> grid()
> dev.off()
null device 
          1 
> postscript(file="/var/www/html/rcomp/tmp/9f2th1258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(mylm, las = 1, sub='Residual Diagnostics')
> par(opar)
> dev.off()
null device 
          1 
> if (n > n25) {
+ postscript(file="/var/www/html/rcomp/tmp/1038gm1258570572.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) 
+ plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
+ grid()
+ dev.off()
+ }
null device 
          1 
> 
> #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab
> load(file="/var/www/html/rcomp/createtable")
> 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
> a<-table.row.end(a)
> myeq <- colnames(x)[1]
> myeq <- paste(myeq, '[t] = ', sep='')
> for (i in 1:k){
+ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
+ myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
+ if (rownames(mysum$coefficients)[i] != '(Intercept)') {
+ myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
+ if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
+ }
+ }
> myeq <- paste(myeq, ' + e[t]')
> a<-table.row.start(a)
> a<-table.element(a, myeq)
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/11xt0q1258570572.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a,'Variable',header=TRUE)
> a<-table.element(a,'Parameter',header=TRUE)
> a<-table.element(a,'S.D.',header=TRUE)
> a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
> a<-table.element(a,'2-tail p-value',header=TRUE)
> a<-table.element(a,'1-tail p-value',header=TRUE)
> a<-table.row.end(a)
> for (i in 1:k){
+ a<-table.row.start(a)
+ a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
+ a<-table.element(a,mysum$coefficients[i,1])
+ a<-table.element(a, round(mysum$coefficients[i,2],6))
+ a<-table.element(a, round(mysum$coefficients[i,3],4))
+ a<-table.element(a, round(mysum$coefficients[i,4],6))
+ a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/122qcr1258570573.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple R',1,TRUE)
> a<-table.element(a, sqrt(mysum$r.squared))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'R-squared',1,TRUE)
> a<-table.element(a, mysum$r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Adjusted R-squared',1,TRUE)
> a<-table.element(a, mysum$adj.r.squared)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (value)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[1])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[2])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
> a<-table.element(a, mysum$fstatistic[3])
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'p-value',1,TRUE)
> a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
> a<-table.element(a, mysum$sigma)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
> a<-table.element(a, sum(myerror*myerror))
> a<-table.row.end(a)
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/13qoop1258570573.tab") 
> a<-table.start()
> a<-table.row.start(a)
> a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
> a<-table.row.end(a)
> a<-table.row.start(a)
> a<-table.element(a, 'Time or Index', 1, TRUE)
> a<-table.element(a, 'Actuals', 1, TRUE)
> a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
> a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
> a<-table.row.end(a)
> for (i in 1:n) {
+ a<-table.row.start(a)
+ a<-table.element(a,i, 1, TRUE)
+ a<-table.element(a,x[i])
+ a<-table.element(a,x[i]-mysum$resid[i])
+ a<-table.element(a,mysum$resid[i])
+ a<-table.row.end(a)
+ }
> a<-table.end(a)
> table.save(a,file="/var/www/html/rcomp/tmp/14rwhp1258570573.tab") 
> if (n > n25) {
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'p-values',header=TRUE)
+ a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'breakpoint index',header=TRUE)
+ a<-table.element(a,'greater',header=TRUE)
+ a<-table.element(a,'2-sided',header=TRUE)
+ a<-table.element(a,'less',header=TRUE)
+ a<-table.row.end(a)
+ for (mypoint in kp3:nmkm3) {
+ a<-table.row.start(a)
+ a<-table.element(a,mypoint,header=TRUE)
+ a<-table.element(a,gqarr[mypoint-kp3+1,1])
+ a<-table.element(a,gqarr[mypoint-kp3+1,2])
+ a<-table.element(a,gqarr[mypoint-kp3+1,3])
+ a<-table.row.end(a)
+ }
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/15y1jh1258570573.tab") 
+ a<-table.start()
+ a<-table.row.start(a)
+ a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'Description',header=TRUE)
+ a<-table.element(a,'# significant tests',header=TRUE)
+ a<-table.element(a,'% significant tests',header=TRUE)
+ a<-table.element(a,'OK/NOK',header=TRUE)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'1% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant1)
+ a<-table.element(a,numsignificant1/numgqtests)
+ if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'5% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant5)
+ a<-table.element(a,numsignificant5/numgqtests)
+ if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.row.start(a)
+ a<-table.element(a,'10% type I error level',header=TRUE)
+ a<-table.element(a,numsignificant10)
+ a<-table.element(a,numsignificant10/numgqtests)
+ if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
+ a<-table.element(a,dum)
+ a<-table.row.end(a)
+ a<-table.end(a)
+ table.save(a,file="/var/www/html/rcomp/tmp/16t04o1258570573.tab") 
+ }
> 
> system("convert tmp/1vz381258570572.ps tmp/1vz381258570572.png")
> system("convert tmp/2ptc71258570572.ps tmp/2ptc71258570572.png")
> system("convert tmp/3ck7i1258570572.ps tmp/3ck7i1258570572.png")
> system("convert tmp/4oc271258570572.ps tmp/4oc271258570572.png")
> system("convert tmp/5yy1a1258570572.ps tmp/5yy1a1258570572.png")
> system("convert tmp/6xuzy1258570572.ps tmp/6xuzy1258570572.png")
> system("convert tmp/7blg01258570572.ps tmp/7blg01258570572.png")
> system("convert tmp/89nop1258570572.ps tmp/89nop1258570572.png")
> system("convert tmp/9f2th1258570572.ps tmp/9f2th1258570572.png")
> system("convert tmp/1038gm1258570572.ps tmp/1038gm1258570572.png")
> 
> 
> proc.time()
   user  system elapsed 
  2.488   1.562   2.944