R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > x <- c(2058.00,2160.00,2260.00,2498.00,2695.00,2799.00,2947.00,2930.00,2318.00,2540.00,2570.00,2669.00,2450.00,2842.00,3440.00,2678.00,2981.00,2260.00,2844.00,2546.00,2456.00,2295.00,2379.00,2479.00,2057.00,2280.00,2351.00,2276.00,2548.00,2311.00,2201.00,2725.00,2408.00,2139.00,1898.00,2537.00,2069.00,2063.00,2526.00,2440.00,2191.00,2797.00,2074.00,2628.00,2287.00,2146.00,2430.00,2141.00,1827.00,2082.00,1788.00,1743.00,2245.00,1963.00,1828.00,2527.00,2114.00,2424.00) > par10 = 'FALSE' > par9 = '0' > par8 = '0' > par7 = '0' > par6 = '3' > par5 = '12' > par4 = '0' > par3 = '0' > par2 = '-1.7' > par1 = '12' > #'GNU S' R Code compiled by R2WASP v. 1.0.44 () > #Author: Prof. Dr. P. Wessa > #To cite this work: AUTHOR(S), (YEAR), YOUR SOFTWARE TITLE (vNUMBER) in Free Statistics Software (v$_version), Office for Research Development and Education, URL http://www.wessa.net/rwasp_YOURPAGE.wasp/ > #Source of accompanying publication: Office for Research, Development, and Education > #Technical description: Write here your technical program description (don't use hard returns!) > par1 <- as.numeric(par1) #cut off periods > par2 <- as.numeric(par2) #lambda > par3 <- as.numeric(par3) #degree of non-seasonal differencing > par4 <- as.numeric(par4) #degree of seasonal differencing > par5 <- as.numeric(par5) #seasonal period > par6 <- as.numeric(par6) #p > par7 <- as.numeric(par7) #q > par8 <- as.numeric(par8) #P > par9 <- as.numeric(par9) #Q > if (par10 == 'TRUE') par10 <- TRUE > if (par10 == 'FALSE') par10 <- FALSE > if (par2 == 0) x <- log(x) > if (par2 != 0) x <- x^par2 > lx <- length(x) > first <- lx - 2*par1 > nx <- lx - par1 > nx1 <- nx + 1 > fx <- lx - nx > if (fx < 1) { + fx <- par5 + nx1 <- lx + fx - 1 + first <- lx - 2*fx + } > first <- 1 > if (fx < 3) fx <- round(lx/10,0) > (arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML')) Call: arima(x = x[1:nx], order = c(par6, par3, par7), seasonal = list(order = c(par8, par4, par9), period = par5), include.mean = par10, method = "ML") Coefficients: ar1 ar2 ar3 0.2822 0.3751 0.3360 s.e. 0.1412 0.1333 0.1409 sigma^2 estimated as 1.188e-13: log likelihood = 617.16, aic = -1226.33 > (forecast <- predict(arima.out,fx)) $pred Time Series: Start = 47 End = 58 Frequency = 1 [1] 1.858350e-06 1.991758e-06 1.987655e-06 1.932217e-06 1.959856e-06 [6] 1.945483e-06 1.933169e-06 1.933589e-06 1.924260e-06 1.917648e-06 [11] 1.912425e-06 1.905337e-06 $se Time Series: Start = 47 End = 58 Frequency = 1 [1] 3.446393e-07 3.580957e-07 3.908806e-07 4.374810e-07 4.614797e-07 [6] 4.910333e-07 5.191199e-07 5.431594e-07 5.675618e-07 5.904985e-07 [11] 6.121648e-07 6.332339e-07 > (lb <- forecast$pred - 1.96 * forecast$se) Time Series: Start = 47 End = 58 Frequency = 1 [1] 1.182857e-06 1.289890e-06 1.221529e-06 1.074754e-06 1.055355e-06 [6] 9.830574e-07 9.156936e-07 8.689964e-07 8.118389e-07 7.602712e-07 [11] 7.125821e-07 6.641989e-07 > (ub <- forecast$pred + 1.96 * forecast$se) Time Series: Start = 47 End = 58 Frequency = 1 [1] 2.533843e-06 2.693626e-06 2.753781e-06 2.789680e-06 2.864356e-06 [6] 2.907908e-06 2.950643e-06 2.998181e-06 3.036681e-06 3.075025e-06 [11] 3.112268e-06 3.146476e-06 > if (par2 == 0) { + x <- exp(x) + forecast$pred <- exp(forecast$pred) + lb <- exp(lb) + ub <- exp(ub) + } > if (par2 != 0) { + x <- x^(1/par2) + forecast$pred <- forecast$pred^(1/par2) + lb <- lb^(1/par2) + ub <- ub^(1/par2) + } > if (par2 < 0) { + olb <- lb + lb <- ub + ub <- olb + } > (actandfor <- c(x[1:nx], forecast$pred)) [1] 2058.000 2160.000 2260.000 2498.000 2695.000 2799.000 2947.000 2930.000 [9] 2318.000 2540.000 2570.000 2669.000 2450.000 2842.000 3440.000 2678.000 [17] 2981.000 2260.000 2844.000 2546.000 2456.000 2295.000 2379.000 2479.000 [25] 2057.000 2280.000 2351.000 2276.000 2548.000 2311.000 2201.000 2725.000 [33] 2408.000 2139.000 1898.000 2537.000 2069.000 2063.000 2526.000 2440.000 [41] 2191.000 2797.000 2074.000 2628.000 2287.000 2146.000 2350.182 2256.266 [49] 2259.004 2296.908 2277.798 2287.682 2296.243 2295.949 2302.490 2307.157 [57] 2310.861 2315.914 > (perc.se <- (ub-forecast$pred)/1.96/forecast$pred) Time Series: Start = 47 End = 58 Frequency = 1 [1] 0.1553033 0.1485668 0.1691853 0.2102312 0.2241009 0.2520950 0.2816366 [8] 0.3065009 0.3374349 0.3690150 0.4017008 0.4381353 > postscript(file="/var/www/html/rcomp/tmp/1bqbc1261678884.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > opar <- par(mar=c(4,4,2,2),las=1) > ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub)) > plot(x,ylim=ylim,type='n',xlim=c(first,lx)) > usr <- par('usr') > rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon') > rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender') > abline(h= (-3:3)*2 , col ='gray', lty =3) > polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA) > lines(nx1:lx, lb , lty=2) > lines(nx1:lx, ub , lty=2) > lines(x, lwd=2) > lines(nx1:lx, forecast$pred , lwd=2 , col ='white') > box() > par(opar) > dev.off() null device 1 > prob.dec <- array(NA, dim=fx) > prob.sdec <- array(NA, dim=fx) > prob.ldec <- array(NA, dim=fx) > prob.pval <- array(NA, dim=fx) > perf.pe <- array(0, dim=fx) > perf.mape <- array(0, dim=fx) > perf.se <- array(0, dim=fx) > perf.mse <- array(0, dim=fx) > perf.rmse <- array(0, dim=fx) > for (i in 1:fx) { + locSD <- (ub[i] - forecast$pred[i]) / 1.96 + perf.pe[i] = (x[nx+i] - forecast$pred[i]) / forecast$pred[i] + perf.mape[i] = perf.mape[i] + abs(perf.pe[i]) + perf.se[i] = (x[nx+i] - forecast$pred[i])^2 + perf.mse[i] = perf.mse[i] + perf.se[i] + prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD) + prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD) + prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD) + prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD) + } > perf.mape = perf.mape / fx > perf.mse = perf.mse / fx > perf.rmse = sqrt(perf.mse) > postscript(file="/var/www/html/rcomp/tmp/24sx01261678884.ps",horizontal=F,pagecentre=F,paper="special",width=8.3333333333333,height=5.5555555555556) > plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub))) > dum <- forecast$pred > dum[1:12] <- x[(nx+1):lx] > lines(dum, lty=1) > lines(ub,lty=3) > lines(lb,lty=3) > dev.off() null device 1 > > #Note: the /var/www/html/rcomp/createtable file can be downloaded at http://www.wessa.net/cretab > load(file="/var/www/html/rcomp/createtable") > > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'Y[t]',1,header=TRUE) > a<-table.element(a,'F[t]',1,header=TRUE) > a<-table.element(a,'95% LB',1,header=TRUE) > a<-table.element(a,'95% UB',1,header=TRUE) > a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE) > a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE) > mylab <- paste('P(F[t]>Y[',nx,sep='') > mylab <- paste(mylab,'])',sep='') > a<-table.element(a,mylab,1,header=TRUE) > a<-table.row.end(a) > for (i in (nx-par5):nx) { + a<-table.row.start(a) + a<-table.element(a,i,header=TRUE) + a<-table.element(a,x[i]) + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.element(a,'-') + a<-table.row.end(a) + } > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(x[nx+i],4)) + a<-table.element(a,round(forecast$pred[i],4)) + a<-table.element(a,round(lb[i],4)) + a<-table.element(a,round(ub[i],4)) + a<-table.element(a,round((1-prob.pval[i]),4)) + a<-table.element(a,round((1-prob.dec[i]),4)) + a<-table.element(a,round((1-prob.sdec[i]),4)) + a<-table.element(a,round((1-prob.ldec[i]),4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/3mzsm1261678884.tab") > a<-table.start() > a<-table.row.start(a) > a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',7,TRUE) > a<-table.row.end(a) > a<-table.row.start(a) > a<-table.element(a,'time',1,header=TRUE) > a<-table.element(a,'% S.E.',1,header=TRUE) > a<-table.element(a,'PE',1,header=TRUE) > a<-table.element(a,'MAPE',1,header=TRUE) > a<-table.element(a,'Sq.E',1,header=TRUE) > a<-table.element(a,'MSE',1,header=TRUE) > a<-table.element(a,'RMSE',1,header=TRUE) > a<-table.row.end(a) > for (i in 1:fx) { + a<-table.row.start(a) + a<-table.element(a,nx+i,header=TRUE) + a<-table.element(a,round(perc.se[i],4)) + a<-table.element(a,round(perf.pe[i],4)) + a<-table.element(a,round(perf.mape[i],4)) + a<-table.element(a,round(perf.se[i],4)) + a<-table.element(a,round(perf.mse[i],4)) + a<-table.element(a,round(perf.rmse[i],4)) + a<-table.row.end(a) + } > a<-table.end(a) > table.save(a,file="/var/www/html/rcomp/tmp/488o61261678884.tab") > > try(system("convert tmp/1bqbc1261678884.ps tmp/1bqbc1261678884.png",intern=TRUE)) character(0) > try(system("convert tmp/24sx01261678884.ps tmp/24sx01261678884.png",intern=TRUE)) character(0) > > > proc.time() user system elapsed 0.596 0.315 0.847